Строение и уровни структурной организации белков. Реферат: Значение белков в питании

Повсюду, где мы встречаем жизнь,
мы находим, что она связана
с каким-либо белковым телом.

Ф.Энгельс

Цели . Расширить знания о белках как природных полимерах, о многообразии их функций во взаимосвязи со строением и свойствами; использовать опыты с белками для реализации межпредметных связей и для развития интереса учащихся.

План изучения

  • Роль белков в организме.
  • Состав, строение, свойства белков.
  • Функции белков.
  • Синтез белков.
  • Превращения белков в организме.

ХОД УРОКА

Роль белков в организме

Учитель биологии. Из органических веществ, входящих в живую клетку, важнейшую роль играют белки. На их долю приходится около 50% массы клетки. Благодаря белкам организм приобрел возможность двигаться, размножаться, расти, усваивать пищу, реагировать на внешние воздействия и т. д.
«Жизнь есть способ существования белковых тел, существенным моментом которого является постоянный обмен веществ с окружающей их внешней природой, причем с прекращением этого обмена веществ прекращается и жизнь, что приводит к разложению белка», – писал Энгельс в своих трудах.

Состав, строение, свойства белков

Учитель химии . Белки – это сложные высокомолекулярные природные соединения, построенные из -аминокислот. В состав белков входит 20 различных аминокислот, отсюда следует огромное многообразие белков при различных комбинациях аминокислот. Как из 33 букв алфавита мы можем составить бесконечное число слов, так из 20 аминокислот – бесконечное множество белков. В организме человека насчитывается до 100 000 белков.
Белки подразделяют на протеины (простые белки) и протеиды (сложные белки).
Число аминокислотных остатков, входящих в молекулы, различно: инсулин – 51, миоглобин – 140. Отсюда M r белка от 10 000 до нескольких миллионов.
Историческая справка . Первая гипотеза о строении молекулы белка была предложена в 70-х годах XIX в. Это была уреидная теория строения белка. В 1903 г. немецкий ученый Э.Г.Фишер предложил пептидную теорию, которая стала ключом к тайне строения белка. Фишер предположил, что белки представляют собой полимеры из остатков аминокислот, соединенных пептидной связью NH–CO. Идея о том, что белки – это полимерные образования, высказывалась еще в 1888 г. русским ученым А.Я.Данилевским. Эта теория получила подтверждение в последующих работах. Согласно полипептидной теории белки имеют определенную структуру.
(Демонстрация кинофрагмента «Первичная, вторичная, третичная структура белка».)
Многие белки состоят из нескольких полипептидных частиц, которые складываются в единый агрегат. Так, молекула гемоглобина (С 738 Н 1166 S 2 Fe 4 O 208) состоит из четырех субъединиц. Отметим, что M r белка яйца = 36 000, M r белка мышц = 1 500 000.

Первичная структура белка – последовательность чередования аминокислотных остатков (все связи ковалентные, прочные) (рис. 1).

Вторичная структура – форма полипептидной цепи в пространстве. Белковая цепь закручена в спираль (за счет множества водородных связей) (рис. 2).

Третичная структура – реальная трехмерная конфигурация, которую принимает в пространстве закрученная спираль (за счет гидрофобных связей), у некоторых белков – S–S-связи (бисульфидные связи) (рис. 3).

Четвертичная структура – соединенные друг с другом макромолекулы белков образуют комплекс (рис. 4).

Химические свойства белков

При нагревании белков и пептидов с растворами кислот, щелочей или при действии ферментов протекает гидролиз. Гидролиз белков сводится к расщеплению полипептидных связей:

Лабораторный опыт 1.
Денатурация белков

Денатурация – нарушение природной структуры белка под действием нагревания и химических реагентов.
а) Действие спирта на белок;
б) действие солей хлорида натрия (концентрированный раствор) и ацетата свинца на белок;
в) действие HNO 3 (конц.);
г) свертывание белков при кипячении.

Лабораторный опыт 2.
Цветные качественные реакции белков

а) Биуретовая реакция;
б) ксантопротеиновая реакция;
в) взаимодействие белка с ацетатом свинца при нагревании.

Учительхимии . Данные опыта 1 показывают, что загрязнение природной среды солями тяжелых металлов приводит к отрицательным последствиям для живых организмов. Природные белки теряют присущие им специфические свойства, становятся нерастворимыми, денатурируют. При отравлении людей солями тяжелых металлов используют молоко, белки которого связывают ионы таких металлов.
(Демонстрация фрагмента из 1-й части фильма «Белки, строение белковых молекул».)

Функции белков

Учитель биологии . Функции белков разнообразны.

1. Строительный материал – белки участвуют в образовании оболочки клетки, органоидов и мембран клетки. Из белков построены кровеносные сосуды, сухожилия, волосы.
2. Каталитическая роль – все клеточные катализаторы – белки (активные центры фермента). Структура активного центра фермента и структура субстрата точно соответствуют друг другу, как ключ и замок.
3. Двигательная функция – сократительные белки вызывают всякое движение.
4. Транспортная функция – белок крови гемоглобин присоединяет кислород и разносит его по всем тканям.
5. Защитная роль – выработка белковых тел и антител для обезвреживания чужеродных веществ.
6. Энергетическая функция – 1 г белка эквивалентен 17,6 кДж.

Синтез белков

Учитель биологии. Человек в течение длительного времени потреблял белки, выделенные главным образом из растений и животных. В последние десятилетия ведутся работы по искусственному получению белковых веществ. Половина земного шара находится в состоянии белкового голодания, а мировая нехватка пищевого белка составляет около 15 млн т в год при норме потребления белка в сутки взрослым человеком 115 г.
(Демонстрация фрагмента 2-й части кинофильма «Белки, строение белковых молекул» – о сборке молекулы белка.)

Превращения белков в организме

Учительхимии . Выводы. Все белки являются полипептидами, но не всякий полипептид является белком. Каждый белок имеет свое специфическое строение.

Домашнее задание . Рудзитис Г.Е., Фельдман Ф.Г . Химия-11. М.: Просвещение, 1992, с. 18–22.

ЛИТЕРАТУРА

Макареня А.А. Повторим химию. М.: Высшая школа, 1989;
Пособие по химии. Органическая химия для подготовки в учебные заведения медико-биологического профиля. Ростов-на-Дону: Изд-во Ростовского ун-та, 1995;
Колтун М. Мир химии. М.: Детская литература, 1988;
Книга для чтения по органической химии. Сост. П.Ф.Буцкус. М.: Просвещение, 1985;
Чертков И.Н. Эксперимент по полимерам в средней школе. М.: Просвещение, 1971;
Кузовая Т.В., Калякина Е.А. Белки. «Химия» (Издательский дом «Первое сентября»), 2003, № 3,
с. 14;
Беляев Д.К., Воронцов Н.Н., Дымишц Г.М. и др. Общая биология. М.: Просвещение, 1999, 287 с.

Среди органических веществ белки , или протеины , - самые многочисленные, наиболее разнообразные и имеющие первостепенное значение биополимеры. На их долю приходится 50 - 80% сухой массы клетки.

Молекулы белков имеют большие размеры, поэтому их называют макромолекулами . Кроме углерода , кислорода , водорода и азота , в состав белков могут входить сера, фосфор и железо. Белки отличаются друг от друга числом (от ста до нескольких тысяч), составом и последовательностью мономеров. Мономерами белков являются аминокислоты (рис. 1)

Бесконечное разнообразие белков создается за счет различного сочетания всего 20 аминокислот. Каждая аминокислота имеет свое название, особое строение и свойства. Их общую формулу можно представить в следующем виде:


Молекула аминокислоты состоит из двух одинаковых для всех аминокислот частей, одна из которых является аминогруппой (-NH 2 ) с основными свойствами, другая - карбоксильной группой (-COOH ) с кислотными свойствами. Часть молекулы, называемая радикалом (R ), у разных аминокислот имеет различное строение. Наличие в одной молекуле аминокислоты основной и кислотной групп обусловливает их высокую реакционную способность. через эти группы происходит соединение аминокислот при образовании белка. При этом возникает молекула воды, а освободившиеся электроны образуют пептидную связь. Поэтому белки называют полипептидами .


Молекулы белков могут иметь различные пространственные конфигурации, и в их строении различают четыре уровня структурной организации.

Последовательность аминокислот в составе полипептидной цепи представляет первичную структуру белка. Она уникальна для любого белка и определяет его форму, свойства и функции.
Большинство белков имеют вид спирали в результате образования водородных связей между -CO- и -NH- группами разных аминокислотных остатков полипептидной цепи. Водородные связи малопрочные, но в комплексе они обеспечивают довольно прочную структуру. Эта спираль - вторичная структура белка.

Третичная структура - трехмерная пространственная «упаковка» полипептидной цепи. В результате возникает причудливая, но для каждого белка специфическая конфигурация - глобула . Прочность третичной структуры обеспечивается разнообразными связями, возникающими между радикалами аминокислот.

Четвертичная структура характерна не для всех белков. Она возникает в результате соединения нескольких макромолекул с третичной структурой в сложный комплекс. Например, гемоглобин крови человека представляет комплекс из четырех макромолекул белка.
Такая сложность структуры белковых молекул связана с разнообразием функций, свойственных этим биополимерам.
Нарушение природной структуры белка называют денатурацией . Она может происходить под воздействием температуры, химических веществ, лучистой энергии и других факторов. При слабом воздействии распадается только четвертичная структура, при более сильном - третичная, а затем - вторичная, и белок остается в виде полипептидной цепи.
Этот процесс частично обратим: если не нарушена первичная структура, то денатурированный белок способен восстанавливать свою структуру. Отсюда следует, что все особенность строение макромолекулы белка определяются его первичной структурой.

Кроме простых белков , состоящих только из аминокислот, есть еще и сложные белки

А. В. Гроздова, главный редактор журнала «Практическая диетология»

Слово «белок» в переводе с греческого означает «первое, важное». И это неспроста. Белки - основной материал, из которого великий архитектор - природа - строит жизнь. Сама жизнь - это форма существования белковых тел. Ибо каждая клетка живого организма содержит белки, которые служат основным пластическим материалом, из которого строятся ткани человеческого организма. Он делает возможным основные проявления жизни: пищеварение, обмен веществ, сократимость мышц, раздражимость тканей, способность к росту, размножение и даже высшую форму движения материи - мышление.

Белок - строительный материал для организма

Важным элементом рационального питания служит его белковая полноценность. Проявление в организме биологических свойств различных компонентов пищи, особенно витаминов, происходит наиболее полно только на фоне достаточного белкового питания. Процессы синтеза в организме также находятся в зависимости от уровня белкового питания. Так, синтез фосфатидов, играющих важную роль в нормализации жирового и холестеринового обмена, ограничивается или полностью прекращается при недостатке белков в питании.

В организме человека постоянно отмирает и распадается множество клеток. Для того чтобы построить новые клетки взамен старых, опять-таки нужен строительный материал, и прежде всего белок. Из белка строится не только цитоплазма клеток, но и ферменты гормоны и другие биологически активные вещества, регулирующие обмен веществ.

Так, недостаток белка в питании приводит к резкому отставанию развития ребенка и значительным нарушениям в здоровье взрослых: падает трудоспособность, понижается сопротивляемость организма к простудным и инфекционным заболеваниям.

Хотите больше новой информации по вопросам диетологии?
Оформите подписку на информационно-практический журнал «Практическая диетология»!

Что внутри?

В состав белковой молекулы входит несколько основных химических элементов - углерод, водород, кислород, азот, а также сера, фосфор и некоторые другие. Несмотря на это, молекулы белков сложны и бесконечно разнообразны, как разнообразны проявления жизни.

Есть в строении белков одно общее: они состоят из аминокислот. Всего в состав молекул белка их входит 20 наименований. Большая часть аминокислот может образовываться в организме человека из других аминокислот. Такие аминокислоты называют заменимыми.

Однако десять аминокислот не могут синтезироваться (образовываться) в организме, поэтому они называются незаменимыми. Это лизин, лейцин, изолейцин, треонин, триптофан, валин, метионин, фенилаланин, цистеин, аргинин. Они должны обязательно поступать готовыми с пищей и в таких количествах и соотношениях, как это необходимо нам для построения белков нашего тела.

На основе многолетних исследований Всемирная организация здравоохранения (ВОЗ) определила идеальное соотношение незаменимых аминокислот в 1 г пищевого белка (см. табл. № 1). В этот перечень включены и две заменимые АК - цистин и тирозин, так как они могут в известной степени восполнять недостаток незаменимых АК - метионина и фенилаланина.

Источники белка

Больше всего белка содержится в продуктах животного происхождения: в сыре (около 25 г на 100 г продукта), в мясе и рыбе (16-20 г), в яйцах (13 г), в твороге (14 г).

Содержатся белки и в продуктах растительного происхождения (преобладают они в горохе и фасоли ). Однако в большинстве растительных белков заметно не хватает одной или двух незаменимых аминокислот. Так, белок пшеницы содержит лишь половину требуемого лизина, а в белке картофеля или гороха недостает примерно трети метионина и цистина. Кроме того, растительные белки хуже усваиваются: не на 95-96 %, как белки мяса, рыбы, яиц, молока, а лишь на 80 % (овощи) и даже на 70 % (бобовые, картофель). Неполноценными считаются белки круп и хлеба.

Вот почему современная наука о питании предостерегает от увлечения вегетарианством. Длительное употребление растительной пищи неизбежно ведет к дисбалансу аминокислот, что отрицательно сказывается на многих функциях организма, в том числе на умственной деятельности.

Оказывается, что такой вполне доступный продукт, как рыба, имеет более высокое содержание незаменимой аминокислоты - лизина, чем даже яичный белок. Среднее содержание лизина в рыбных продуктах в 8 раз выше, чем в хлебе. Характерно, что в белках рыбы содержание лизина повышается к моменту ее нереста, причем оно выше у самцов, чем у самок. Высокое содержание лизина делает рыбные продукты весьма ценным добавлением, например, к хлебу.

Исключительное место среди незаменимых аминокислот занимает метионин. Он предупреждает и лечит атеросклероз, регулирует деятельность надпочечников. Суточная потребность человека в метионине составляет 2,2 г. «Королем метионина» назвал академик А. А. Покровский творог. «Королевой метионина» можно назвать рыбу. Судите сами: в 100 г творога содержится 495 мг метионина, а в 100 г трески - 480 мг.

Для удовлетворения потребности организма человека в таких аминокислотах, как лизин, изолейцин, валин и триптофан, ему необходимо употреблять в пищу 200-300 г рыбы, а для удовлетворения потребности в лейцине и метионине - почти 800 г.

Что важнее?

Вернемся к вопросу, волнующему ученых многие десятилетия: каким белкам следует отдавать предпочтение - животным или растительным. Доказано, что человеку полезно чередовать в рационе питания и мясо, и рыбу, и растительную пищу. Люди же, питающиеся главным образом растительной пищей, лишают тем самым свой организм жизненно необходимых веществ - белков.

Наиболее приемлемый вариант - сочетание животных и растительных белков. По мнению авторов научно-популярной литературы о кулинарном искусстве Н. И. Ковалева и В. В. Усова, биологически ценным является сочетание мяса с картофелем (70:30), мяса с гречневой кашей (50:50). В среднем доля животных белков должна составлять для взрослого человека 55 %. Знание биологической ценности различных продуктов позволяет их комбинировать. Так, например, гречневая крупа содержит белок, в котором мало некоторых важных для организма аминокислот, но при употреблении гречневой каши с молоком этот недостаток восполняется. Еще меньше нужных аминокислот имеется в белках пшена, но если в суточном пищевом рационе человека содержатся мясо, картофель, сыр и другие продукты, то в результате получается смесь белков, удовлетворяющая потребности организма.

Не стоит забывать еще один не менее важный фактор приема пищи, обогащенной белком, - это время приема пищи. Установлено, что один белок тем лучше дополняет другой, чем меньше разрыв во времени между приемом пищи, их содержащей. Если человек съедает бутерброд, состоящий из одной части сыра и трех частей хлеба, то биологическая ценность белков в этом случае будет составлять около 76 %. Если эти же продукты съесть не одновременно, а друг за другом - сначала хлеб, затем сыр (или наоборот), то биологическая ценность их белков составит всего лишь 67 %.

Кулинарными изделиями, удачными по сочетанию белков, являются также бутерброды с мясом, вареники и ватрушки с творогом, пирожки с мясом или рыбой, супы молочные с лапшой и ряд других блюд.

Каша - мать наша

С точки зрения содержания белков определенный интерес представляет каша, хотя белки большинства круп относятся к неполноценным. В народе не зря говорят, что каша - мать наша.

Однако не всякая каша ценна для питания. Например, о гречневой говорят обычно, что она «сама себя хвалит». Это действительно так: по количеству белка и по его аминокислотному составу она стоит на одном из первых мест среди других крупяных блюд. Правда, и овсяная каша в этом отношении не уступает гречневой. Менее ценны по составу белков каши из ячменных круп (ячневой, перловой) и пшена. Если утилизация белка гречневой каши равна 45 %, то овсяной - 44 %, риса - 41 %, манной - 38 %, пшена - 32 %.

Но, оказывается, суть заключается не только в биологической ценности круп. Надо еще уметь варить кашу. Дело это вроде бы на первый взгляд нехитрое. Все знают, что особенно вкусной получается каша, сваренная на молоке. Однако такой способ приготовления имеет свои негативные стороны. Парадокс заключается в том, что молоко содержит сахар (лактозу), который при высокой температуре вступает в реакцию с аминокислотами белков круп, т. е. попросту «блокирует» их и снижает тем самым степень утилизации белка в организме. В результате теряется до 50 % самых ценных аминокислот - лизина и метионина. При этом потери их возрастают по мере увеличения продолжительности нагревания каши. Ну а если уж захочется варить на молоке, то для приготовления жидких и вязких каш с молоком надо крупу сначала довести до готовности в кипящей воде, а потом уже добавлять в кашу молоко.

Для того чтобы белки молока обогатили белки гречневой и овсяной круп, соотношение крупы и молока должно быть соответственно 60 и 220 г. А вот белки пшенной или перловой круп становятся более ценными, если их комбинировать с белками куриных яиц. Для этого надо вначале сварить пшенную или перловую рассыпчатую кашу, а затем заправить ее маслом и посыпать рублеными, сваренными вкрутую яйцами.

Точно так же биологическая ценность смеси белков (1 часть молока и 3 части картофеля) при одновременном их потреблении составляет 86 %, а при разновременном - 81%.

Примером такого же сложного, многокомпонентного блюда с высокой утилизацией белка могут служить тушеные блюда из мяса с овощами (говядина духовая, рагу и др.). При этом выяснилась очень любопытная особенность этих блюд: если мясо тушить или варить вместе с овощами, то усвояемость белков будет выше и утилизируются они организмом лучше, чем при тушении или варке мяса и овощей отдельно.

В статье использованы материалы книг: «Рассказы о тайнах домашней кухни» (Н. И. Ковалев, В. В. Усов, М., 1991 г.), «Рассказы о русской кухне» (Н. И. Ковалев, М., 1992 г.), «Технология приготовления пищи» (Н. И. Ковалев, М. Н. Куткина, В. А. Кравцова, М., 2008 г.).

Белки, или протеины, - сложные, высокомолекулярные органические соединения, состоящие из аминокислот. Они представляют главную, важнейшую часть всех клеток и тканей животных и растительных организмов, без которой не могут осуществляться жизненно важные физиологические процессы. Белки неодинаковы по своему составу и свойствам в различных животных и растительных организмах и в разных клетках и тканях одного и того же организма. Белки разного молекулярного состава различно растворяются в и в водных солевых растворах, в органических растворителях они не растворяются. Благодаря присутствию в белковой молекуле кислых и основных групп она имеет нейтральную реакцию.

Белки образуют многочисленные соединения с любыми химическими веществами, что обусловливает их особое значение в химических реакциях, протекающих в организме и представляющих основу всех проявлений жизни и защиты ее от вредных воздействий. Белки составляют основу ферментов, антител, гемоглобина, миоглобина, многих гормонов, образуют сложные комплексы с витаминами.

Вступая в соединения с жирами и углеводами, белки могут в организме превращаться при своем расщеплении в жиры и углеводы. В животном организме они синтезируются только из аминокислот и их комплексов – полипептидов, а образовываться из неорганических соединений, жиров и углеводов они не могут. Вне организма синтезированы многие низкомолекулярные биологически активные белковые вещества, сходные с теми, которые имеются в организме, например некоторые гормоны.

Общие сведения о белках и их классификации

Белки - важнейшие биоорганические соединения, которые наряду с нуклеиновыми кислотами занимают особую роль в живом веществе - без этих соединений невозможна жизнь, так как, по определению Ф. Энгельса, жизнь является особым существованием белковых тел и т. д.

«Белки - это природные биополимеры, являющиеся продуктами реакции поликонденсации природных альфа-аминокислот».

Природных альфа-аминокислот 18-23, их сочетание образует бесконечно большое количество разновидностей молекул белков, обеспечивающих многообразие различных организмов. Даже для отдельных особей организмов данного вида характерны свои собственные белки, а ряд белков встречается во многих организмах.

Белки характеризуются следующим элементарным составом: они образованы углеродом, водородом, кислородом, азотом, серой и некоторыми другими химическими элементами. Главной особенностью белковых молекул является обязательное наличие в них атомов азота (помимо атомов С, Н, О).

В молекулах белков реализуется «пептидная» связь, т. е. связь между атомом С карбонильной группы и атомом азота аминогруппы, которая обусловливает некоторые особенности белковых молекул. В боковых цепях молекулы белка содержится большое количество радикалов и функциональных групп, что «делает» молекулу белка полифункциональной, способной к значительному многообразию физико-химических и биохимических свойств.

Из-за большого разнообразия белковых молекул и сложности их состава и свойств, белки имеют несколько различных классификаций, основанных на различных признаках. Рассмотрим некоторые из них.

I. По составу различают две группы белков:

1. Протеины (простые белки; молекула их образована только белком, например яичный альбумин).

2. Протеиды - сложные белки, молекулы которых состоят из белковой и небелковой составляющих.

Протеиды подразделяются на несколько групп, важнейшими из которых являются:

1) гликопротеиды (сложное соединение белка и углевода);

2) липопротеиды (комплекс молекул белка и жиров (липидов);

3) нуклеопротеиды (комплекс белковых молекул и молекул нуклеиновых кислот).

II. По форме молекулы различают две группы белков:

1. Глобулярные белки - молекула белка имеет шарообразную форму (форму глобулы), например молекулы яичного альбумина; такие белки или растворимы в воде, или способны к образованию коллоидных растворов.

2. Фибриллярные белки - молекулы этих веществ имеют форму нитей (фибрилл), например, миозин мышц, фиброин шелка. Фибриллярные белки нерастворимы в воде, они образуют структуры, реализующие сократительную, механическую, формообразующую и защитную функции, а также способность организма передвигаться в пространстве.

III. По растворимости в различных растворителях белки разделяют на несколько групп, из которых наиболее важны следующие:

1. Водорастворимые.

2. Жирорастворимые.

Существуют и другие классификации белков.

Краткая характеристика природных альфа-аминокислот

Природные альфа-аминокислоты являются разновидностью аминокислот. Аминокислота - полифункциональное органическое вещество, содержащее в своем составе как минимум две функциональные группы - аминогруппу (-NН 2) и карбоксильную (карбоксидную, последнее правильнее) группу (-СООН).

Альфа-аминокислоты - такие аминокислоты, в молекулах которых амино- и карбоксильные группы находятся у одного атома углерода. Их общая формула - NН 2 СН(R)СООН. Ниже приведены формулы некоторых природных альфа-аминокислот; они записаны в виде, удобном для написания уравнений реакции поликонденсации и используются в случае, когда необходимо написать уравнения (схемы) реакций получения определенных полипептидов:

1) глицин (аминоуксусная кислота) - МН 2 СН 2 СООН;

2) аланин — NН 2 СН(СН 3)СООН;

3) фенилаланин — NН 2 СН(СН 2 С 6 Н 5)СООН;

4) серин — NН 2 СН(СН 2 ОН)СООН;

5) аспарагиновая кислота - NН 2 СН(СН 2 СООН)СООН;

6) цистеин — NН 2 СН(СН 2 SН)СООН и т.д.

Некоторые природные альфа-аминокислоты содержат по две аминогруппы (например, лизин), по две карбоксидные группы (например, аспарагиновая и глутаминовые кислоты), гидроксидные (ОН) группы (например, тирозин), могут быть циклическими (например, пролин).

По характеру влияния природных альфа-аминокислот на обмен веществ их разделяют на заменимые и незаменимые. Незаменимые аминокислоты должны обязательно поступать в организм с пищей.

Краткая характеристика структуры молекул белка

Белки кроме сложного состава характеризуются и сложным строением белковых молекул. Различают четыре вида структур белковых молекул.

1. Первичная структура характеризуется порядком расположения остатков альфа-аминокислот в полипептидной цепи. Например, тетрапептид (полипептид, образовавшийся при поликонденсации четырех молекул аминокислоты) ала-фен-тиро-серин представляет собой последовательность остатков аланина, фенилаланина, тирозина и серина, связанных друг с другом пептидной связью.

2. Вторичная структура белковой молекулы представляет собой пространственное расположение полипептидной цепи. Оно бывает различным, но наиболее распространенной является альфа-спираль, характеризующаяся определенным «шагом» спирали, размерами и расстоянием между отдельными витками спирали.

Устойчивость вторичной структуры белковой молекулы обеспечивается возникновением различных химических связей между отдельными витками спирали. Важнейшая роль среди них принадлежит водородной связи (реализуется за счет втягивания ядра атома водорода групп - NH 2 или =NH в электронную оболочку атомов кислорода или азота), ионной связи (реализуется за счет электростатического взаимодействия ионов -СОО — и - NH + 3 или =NH + 2) и других видов связи.

3. Третичная структура молекул белка характеризуется пространственным расположением альфа-спирали, или иной структуры. Устойчивость таких структур обусловливается теми же видами связи, что и вторичная структура. В результате реализации третичной структуры возникает «субъединица» белковой молекулы, что характерно для очень сложных молекул, а для относительно простых молекул третичная структура является конечной.

4. Четвертичная структура белковой молекулы представляет собой пространственное расположение субъединиц молекул белка. Она характерна для сложных белков, например гемоглобина.

Рассматривая вопрос о структуре белковых молекул, необходимо различать структуру живого белка - нативную структуру и структуру мертвого белка. Белок в живом веществе (нативный белок) отличается от белка, подвергшегося воздействию, при котором он может потерять свойства живого белка. Неглубокое воздействие называют денатурацией, при которой в дальнейшем свойства живого белка могут восстанавливаться. Одним из видов денатурации является обратимая коагуляция. При необратимой коагуляции нативный белок превращается в «мертвый белок».

Краткая характеристика физических, физико-химических и химических свойств белка

Свойства белковых молекул имеют большое значение для реализации их биолого-экологических свойств. Так, по агрегатному состоянию белки относят к твердым веществам, которые могут быть растворимыми или нерастворимыми в воде или других растворителях. Многое в биоэкологической роли белков определяется физическими свойствами. Так, способность молекул белка образовывать коллоидные системы обусловливает их строительную, каталитическую и другие функции. Нерастворимость белков в воде и других растворителях, их фибриллярность обусловливает защитную и формообразующую функции и т. д.

К физико-химическим свойствам белков относится их способность к денатурации и коагуляции. Коагуляция проявляется в коллоидных системах, которые являются основой любого живого вещества. При коагуляции частицы укрупняются за счет их слипания. Коагуляция бывает скрытой (ее можно наблюдать только под микроскопом) и явной - ее признаком является выпадение осадка белка. Коагуляция бывает необратимой, когда после прекращения действия коагулирующего фактора структура коллоидной системы не восстанавливается, и обратимой, когда после удаления коагулирующего фактора коллоидная система восстанавливается.

Примером обратимой коагуляции является выпадение белка яичного альбумина под действием растворов солей, при этом осадок белка растворяется при разбавлении раствора либо при перенесении осадка в дистиллированную воду.

Примером необратимой коагуляции является разрушение коллоидной структуры белка альбумина при нагревании до температуры кипения воды. При смерти (полной) живое вещество превращается в мертвое за счет необратимой коагуляции всей системы.

Химические свойства белков весьма многообразны из-за наличия в белковых молекулах большого числа функциональных групп, а также за счет наличия пептидной и других связей в молекулах белка. С эколого-биологических позиций наибольшее значение имеет способность молекул белка к гидролизу (при этом в конечном счете получается смесь природных альфа-аминокислот, которые участвовали в образовании данной молекулы, в этой смеси могут быть и другие вещества, если белок был протеидом), к окислению (его продуктами могут быть углекислый газ, вода, соединения азота, например, мочевина, соединения фосфора и т. д.).

Белки горят с выделением запаха «жженого рога» или «жженых перьев», что необходимо знать при проведении простейших экологических опытов. Известны различные цветные реакции на белок (биуретова, ксантопротеиновая и др.), подробнее о них - в курсе химии.

Краткая характеристика эколого-биологических функций белков

Необходимо различать эколого-биологическую роль белков в клетках и в организме в целом.

Эколого-биологическая роль белков в клетках

Вследствие того, что белки (наряду с нуклеиновыми кислотами) - это вещества жизни, то их функции в клетках весьма многообразны.

1. Важнейшей функцией белковых молекул является структурная функция, состоящая в том, что белок - это важнейший компонент всех структур, образующих клетку, в которые он входит в составе комплекса различных химических соединений.

2. Белок - важнейший реагент в протекании огромного многообразия биохимических реакций, обеспечивающих нормальное функционирование живого вещества, поэтому для него характерна реагентная функция.

3. В живом веществе реакции возможны только в присутствии биологических катализаторов - ферментов, а как установлено в результате биохимических исследований, ферменты имеют белковую природу, поэтому белки выполняют и каталитическую функцию.

4. В случае необходимости в организмах белки окисляются и при этом выделяется , за счет которой синтезируется АТФ, т.е. белки выполняют и энергетическую функцию, но вследствие того, что эти вещества имеют для организмов особую ценность (из-за их сложного состава), то энергетическая функция белков реализуется организмами только в критических условиях.

5. Белки могут выполнять и запасающую функцию, так как являются своеобразными «консервами» веществ и энергии для организмов (особенно растений), обеспечивающих их начальное развитие (для животных - внутриутробное, для растений - развитие зародышей до появления молодого организма - проростка).

Ряд функций белка характерны и для клеток, и для организма в целом, поэтому рассмотрены ниже.

Эколого-биологическая роль белков в организмах (в целом)

1. Белки образуют в клетках и организмах особые структуры (в совокупности с другими веществами), которые способны воспринимать сигналы из окружающей среды в виде раздражений, за счет чего возникает состояние «возбуждения», на которое организм отвечает определенной реакцией, т.е. для белков и в клетке, и в организме в целом характерна воспринимающая функция.

2. Белкам характерна и проводящая функция (и в клетках, и в организме в целом), состоящая в том, что возникшее в определенных структурах клетки (организма) возбуждение, передается в соответствующий центр (клетки или организма), в котором формируется определенная реакция (ответ) организма или клетки на поступивший сигнал.

3. Многие организмы способны к перемещению в пространстве, что возможно за счет способности структур клетки или организма к сокращению, а это возможно потому, что белки фибриллярной структуры обладают сократительной функцией.

4. Для гетеротрофных организмов белки как отдельно, так и в смеси с другими веществами являются продуктами питания, т. е. им характерна трофическая функция.

Краткая характеристика превращений белков в гетеротрофных организмах на примере человека

Белки в составе пищи попадают в ротовую полость, где смачиваются слюной, измельчаются зубами и превращаются в гомогенную массу (при тщательном пережевывании), и через глотку и пищевод поступают в желудок (до попадания в последний с белками как соединениями ничего не происходит).

В желудке пищевой комок пропитывается желудочным соком, являющимся секретом желудочных желез. Желудочный сок представляет собой водную систему, содержащую хлороводород и ферменты, важнейшим из которых (для белков) является пепсин. Пепсин в кислой среде вызывает процесс гидролиза белков до пептонов. Пищевая кашица далее поступает в первый отдел тонкого кишечника - двенадцатиперстную кишку, в которую открывается проток поджелудочной железы, выделяющей панкреатический сок, обладающий щелочной средой и комплексом ферментов, из которых трипсин ускоряет процесс гидролиза белков и ведет его до конца, т. е. до появления смеси природных альфа-аминокислот (они растворимы и способны всасываться в кровь ворсинками кишечника).

Эта смесь аминокислот поступает в межтканевую жидкость, а оттуда - в клетки организма, в которых они (аминокислоты) вступают в различные превращения. Одна часть этих соединений непосредственно используется для синтеза белков, характерных для данного организма, вторая - подвергается переаминированию или дезаминированию, давая новые соединения, необходимые организму, третья - окисляется и является источником энергии, необходимой организму для реализации своих жизненных функций.

Необходимо отметить некоторые особенности внутриклеточных превращений белков. Если организм гетеротрофный и одноклеточный, то белки в составе пищи попадают внутрь клеток в цитоплазму или специальные пищеварительные вакуоли, где под действием ферментов подвергаются гидролизу, а далее все протекает так, как описано для аминокислот в клетках. Клеточные структуры постоянно обновляются, поэтому «старый» белок заменяется на «новый», при этом первый гидролизуется с получением смеси аминокислот.

У автотрофных организмов имеются свои особенности в превращениях белков. Первичные белки (в клетках меристем) синтезируются из аминокислот, которые синтезируются из продуктов превращений первичных углеводов (они возникли при фотосинтезе) и неорганических азотсодержащих веществ (нитратов или солей аммония). Замена белковых структур в длительно живущих клетках автотрофных организмов не отличается от такового для гетеротрофных организмов.

Азотистое равновесие

Белки, состоящие из аминокислот, - это основные соединения, которым свойственны процессы жизни. Поэтому исключительно важен учет обмена белков и продуктов их расщепления.

Азота в составе пота очень мало, поэтому обычно анализ пота на содержание азота не делается. Количество азота, поступившего с пищей, и количество азота, содержащегося в моче и кале, умножается на 6,25 (16%) и из первой величины вычитается вторая. В результате определяется количество азота, поступившего в организм и усвоенного им.

Когда поступившее в организм с пищей количество азота равно количеству азота в моче и кале, т. е. образовавшемуся при дезаминировании, то имеется азотистое равновесие. Азотистое равновесие свойственно, как правило, взрослому здоровому организму.

Когда количество поступившего в организм азота больше количества выделенного азота, то имеется положительный азотистый баланс, т. е. количество белка, вошедшего в состав организма, больше количества белка, подвергшегося распаду. Положительный азотистый баланс характерен для растущего здорового организма.

Когда поступление белка с пищей увеличивается, то увеличивается и количество азота, выделяемого с мочой.

И, наконец, когда количество поступившего в организм азота меньше количества выделенного азота, то имеется отрицательный азотистый баланс, при котором распад белка превышает его синтез и разрушается белок, входящий в состав организма. Это бывает при белковом голодании и тогда, когда не поступают необходимые для организма аминокислоты. Отрицательный азотистый баланс обнаружен и после действия больших доз ионизирующего облучения, вызывающих усиленный распад белков в органах и тканях.

Проблема белкового оптимума

Минимальное количество белков пищи, необходимое для восполнения разрушающихся белков организма, или величина распада белков организма при исключительно углеводном питании, обозначается как коэффициент изнашивания. У взрослого человека наименьшая величина этого коэффициента около 30 г белков в сутки. Однако этого количества недостаточно.

Жиры и углеводы оказывают влияние на расход белков сверх минимума, необходимого для пластических целей, так как они освобождают то количество энергии, которое требовалось для расщепления белков сверх минимума. Углеводы при нормальном питании уменьшают расщепление белков в 3-3,5 раза больше, чем при полном голодании.

Для взрослого человека при смешанной пище, содержащей достаточное количество углеводов и жиров, и массе тела 70 кг норма белка в сутки равна 105 г.

Количество белка, полностью обеспечивающее рост и жизнедеятельность организма, обозначается как белковый оптимум и равно у человека при легкой работе 100-125 г белка в сутки, при тяжелой работе - до 165 г, а при очень тяжелой - 220-230 г.

Количество белка в сутки должно быть по массе не меньше 17% от общего количества пищи, а по энергии - 14%.

Полноценные и неполноценные белки

Белки, поступающие в организм с пищей, разделяются на биологически полноценные и биологически неполноценные.

Биологически полноценными называются те белки, в которых в достаточном количестве содержатся все аминокислоты, необходимые для синтеза белка животного организма. В состав полноценных белков, необходимых для роста организма, входят следующие незаменимые аминокислоты: лизин, триптофан, треонин, лейцин, изолейцин, гистидин, аргинин, валин, метионин, фенилаланин. Из этих аминокислот могут образоваться другие аминокислоты, гормоны и т. д. Из фенилаланина образуется тирозин, из тирозина путем превращений - гормоны тироксин и адреналин, из гистидина - гистамин. Метионин участвует в образовании гормонов щитовидной железы и необходим для образования холина, цистеина и глютатиона. Он необходим для окислительно-восстановительных процессов, азотистого обмена, усвоения жиров, нормальной деятельности головного мозга. Лизин участвует в кроветворении, способствует росту организма. Триптофан также необходим для роста, участвует в образовании серотонина, витамина РР, в тканевом синтезе. Лизин, цистин и валин возбуждают сердечную деятельность. Малое содержание цистина в пище задерживает рост волос, увеличивает содержание сахара в крови.

Биологические неполноценными называются те белки, в которых отсутствуют хотя бы даже одна аминокислота, которая не может быть синтезирована животными организмами.

Биологическая ценность белка измеряется количеством белка организма, которое образуется из 100 г белка пищи.

Белки животного происхождения, содержаться в мясе, яйцах и молоке, наиболее полоненные (70-95%). Белки растительного происхождения имеют меньшую биологическую ценность, например белки ржаного хлеба, кукурузы (60%), картофеля, дрожжей (67%).

Белок животного происхождения – желатина, в котором нет триптофана и тирозина, является неполноценным. В пшенице и ячмене мало лизина, в кукурузе мало лизина и триптофана.

Некоторые аминокислоты заменяют друг друга, например фенилаланин заменяет тирозин.

Два неполноценных белка, в которых недостает разлчных аминокислот, вместе могут составить полноценное белковое питание.

Роль печени в синтезе белков

В печени синтезируются белки, содержащиеся в плазме крови: альбумины, глобулины (за исключением гамма-глобулинов), фибриноген, нуклеиновые кислоты и многочисленные ферменты, из которых некоторые синтезируются только в печени, например ферменты, участвующие в образовании мочевины.

Белки, синтезированные в организме, входят в состав органов, тканей и клеток, ферментов и гормонов (пластическое значение белков), но не запасаются организмом в виде разных белковых соединений. Поэтому та часть белков, которая не имеет пластического значения, при участии ферментов дезаминируется – распадается с освобождением энергии на разные азотистые продукты. Период полураспада белков печени равен 10 дням.

Белковое питание при различных условиях

Нерасщепленный белок не может быть усвоен организмом иначе, как через пищеварительный канал. Белок, введенный вне пищеварительного канала (парэнтерально), вызывает защитную реакцию со стороны организма.

Аминокислоты расщепленного белка и их соединения – полипептиды – приносятся кровью к клеткам организма, в которых под влиянием ферментов непрерывно в течении всей жизни происходит синтез белков. Белки пищи имеют главным образом пластическое значение.

В период роста организма – в детском и юношеском возрасте – синтез белков особенно велик. В старости синтез белков уменьшается. Следовательно, в процессе роста происходит ретенция, или задержка в организме химических элементов , из которых состоят белки.

Изучение обмена с применением изотопов показало, что в некоторых органах в течение 2-3 суток приблизительно половина всех белков подвергается распаду и такое же количество белков заново синтезируется организмом (ресинтез). В каждой ткани, в каждом организме синтезируются специфические белки, отличающиеся от белков других тканей и других организмов.

Подобно жирам и углеводам, аминокислоты, не использованные для построения организма, подвергаются распаду с освобождением энергии.

Аминокислоты, которые образуются из белков умирающих, разрушающихся клеток организма, также подвергаются превращениям с освобождением энергии.

В обычных условиях количество необходимого белка в сутки для взрослого человека 1,5-2,0 г на 1 кг массы тела, в условиях длительного холода 3,0-3,5 г, при очень тяжелой физической работе 3,0-3,5 г.

Увеличение количества белков больше чем до 3,0-3,5 г на 1 кг массы тела нарушает деятельность нервной системы, печени и почек.

Липиды, их классификация и физиологическая роль

Липиды - вещества, нерастворимые в воде и растворяющиеся в органических соединениях (спирте, хлороформе и др.). К липидам относятся нейтральные жиры, жироподобные вещества (липоиды) и некоторые витамины (A, D, E, K). Липиды имеют пластическое значение и входят в состав всех клеток и половых гормонов.

Особенно много липидов в клетках нервной системы и надпочечниках. Значительная часть их используется организмом как энергетический материал.

Глава 3

ЗНАЧЕНИЕ ПИЩЕВЫХ ВЕЩЕСТВ В ОБЕСПЕЧЕНИИ ЖИЗНЕДЕЯТЕЛЬНОСТИ ОРГАНИЗМА

Химический состав пищи определяется набором питательных веществ, включающим белки, жиры, углеводы, витамины, минеральные соли и воду. В зависимости от функционального назначения питательные вещества делятся на преимущественно энергетические (жиры, углеводы), преимущественно пластические (белки, ряд минеральных веществ, вода) и преимущественно каталитические (витамины, микроэлементы). С учётом критерия обязательности питательные вещества дифференцируются на заменимые и незаменимые. К числу заменимых в организме пищевых веществ относятся углеводы и жиры, к незаменимым − 8 − 10 незаменимых аминокислот, 3 − 5 ПНЖК, все витамины и большинство минеральных элементов. Общее количество незаменимых веществ в сбалансированном питании превышает 50.

Значение белков в питании

Белки играют в питании человека чрезвычайно важную роль, так как они являются главной составной частью клеток всех органов и тканей организма. С белками тесно связаны все жизненные процессы: обмен веществ, сократимость, раздражимость, способность к росту, размножению и даже к высшей форме движения материи − мышлению. Связывая значительные количества воды, белки образуют плотные коллоидные структуры, характерные для нашего тела.

Основное назначение белков пищи − это построение новых клеток и тканей, обеспечивающих развитие молодого растущего организма. В зрелом возрасте, когда процессы роста уже полностью завершены, остается потребность в регенерации изношенных отживших клеток. Для этой цели требуется белок, причем пропорционально изнашиваемости тканей. Установлено, что чем выше мышечная нагрузка, тем больше потребности в регенерации и соответственно в белке.

Поступление белка необходимо и для поддержания постоянства специфических белков организма, представляющих собой особую ценность. Эти белки выполняют в организме тонкие и сложные функции, входят в состав гормонов, ферментов, антител и других образований, участвующих в важнейших биохимических процессах жизнедеяельности. Количество и состав специфических белков в организме поддерживаются на постоянном уровне за счёт использования пищи.

Белки − сложные азотсодержащие биополимеры, мономерами которых служат аминокислоты. Молекулярная масса белков варьирует от 6000 до 1000 000 и более. Они составляют около 20 % массы тела человека и более 50 % сухой массы клеток. В состав организма входят тысячи белков, каждый из которых имеет свою уникальную структуру. Благодаря информации, которая содержится в этой структуре, белки функционируют по разнообразным индивидуальным программам, им принадлежит ведущая роль в молекулярных механизмах всех проявлений жизнедеятельности. Информация, которая содержится в белках огромная; она записана в форме длинных последовательностей аминокислотных остатков и поступает из генетического аппарата клетки при биосинтезе белка. Белки являются важнейшими питательными веществами для человека и животных, их применяют в ряде отраслей производства как сырье. Белки − ферменты широко используются в качестве высокоэффективных катализаторов в разных отраслях промышленности.

Структурными элементами белков являются аминокислоты. Сравнительно простые молекулы аминокислот содержат кислотные группы − СООН, основные группы − NH2 и боковые цепи − R. Аминокислоты в белках представлены остатками жирных кислот, которые соединены связями, − СО − NН. Для белка характерны именно такие аминокислотные (полипептидные) цепи, но каждая цепь состоит из десятков, а то и сотен звеньев. Молекула белка содержит один или несколько соединенных между собой полипептидных цепей. В их биосинтезе используются аминокислоты 20 определенных видов. Длина полипептидной цепи в разных белках. неодинакова. Отличается также состав аминокислот и их последовательность в цепи. Строение полипептидной цепи − первичная структура − является основной характеристикой каждого индивидуального белка. Она точно определяется соответствующим геномом , в котором всю последовательность аминокислот в полипептидной цепи записано с помощью нуклеотидного триплетного кода.

В пространственной организации белка различают также: а) вторичную структуру − спиралевидные и вытянуты участки цепи, фиксированные водородными мостиками между, (−COОH−) и (−NH2−) групами пептидной цепи; б) третичную структуру − внутримолекулярную упаковку, которая возникает в результате различных взаимодействий аминокислотных остатков; в) если несколько молекул образуют крепкий комплекс, − это называют четвертичной (пространственной) структурой. Доказано, что пространственная организация балка имеет решающее значение для их биологических функций. Эта организация создается системой внутримолекулярных взаимодействий, которая, в свою очередь, определяется первичной структурой.

По своей структуре аминокислоты представляют собой органические соединения, содержащие две функциональные группы: карбоксильную (−COОH−), определяющую кислотные свойства молекул, и аминогруппу (−NH2−), придающую им основные свойства. Среди огромного количества природных аминокислот в составе белков пищевых продуктов их содержится 20: лизин, треонин, глицин, аланин, серин, метионин, цистин, валин, лейцин, изолейцин, глутаминовая кислота, глутамин, аспарагиновая кислота, аргинин, фенилаланин, тирозин, гистидин, триптофан, пролин.

Белки пищевых продуктов делятся на простые (протеины) и сложные (протеиды). Простые белки состоят только из полипептидных цепей, сложные содержат, помимо белковой молекулы, небелковую часть (простетическую группу). В зависимости от пространственной структуры белки делятся на глобулярные (молекулы которых имеют сферическую или близкую к ним форму) и фибриллярные (состоящиеиз вытянутых нитевидных молекул). К числу простых глобулярных белков относятся альбумины, глобулины, проламины и глютелины. Альбумины и глобулины составляют основную часть белков молока, яичного белка, белков сыворотки крови. Проламины и глютелины относятся к растительным белкам семян злаков, образуя основу клейковины. Растительные белки характеризуются низким содержанием лизина, лейцина, треонина, метионина и триптофана и высоким содержанием глутаминовой кислоты. Структурные белки (протеноиды) относятся к фибриллярным белкам животного происхождения, которые выполняют в организме опорную функцию. Они не растворяются в воде и устойчивы к перевариванию пищеварительными ферментами. К ним относятся кератины, эластин, коллаген. При длительном кипячении в воде коллаген превращается в водорастворимый желатин (глютин), используемый в технологии приготовления ряда мясных и других блюд. Коллаген и эластин содержат мало серосодержащих аминокислот, кератин богат цистином.

Среди сложных белков различают нуклеопротеиды, липопротеиды, гликопротеиды, хромопротеиды, металлопротеиды, фосфопротеиды.

Белки в организме человека выполняют несколько важных функций пластическую, каталитическую, гормональную, функцию специфичности и транспортную. Важнейшей функцией пищевых белков является обеспечение организма пластическим материалом. Белки являются основным строительным материалом клетки, её органоидов и межклеточного вещества, образуют наряду с фосфолипидами остов всех биологических мембран клеток, являются основным компонентом всех ферментов и значительной части гормонов. Белки участвуют в транспорте кровью кислорода, липидов, углеводов, некоторых витаминов, гормонов и других веществ. Специфические белки-переносчики осуществляют транспорт различных минеральных солей и витаминов через мембраны клеток и субклеточных структур. Белки обеспечивают индивидуальную и видовую специфичность, лежащую в основе проявлений иммунитета и аллергии. Единственным источником являются белки пищи, вследствие чего они относятся к незаменимым компонентам рациона.

Количества азота, поступающего в организм с пищей, обычно равно количеству, выводимому из организма (с мочой, калом, потом, слущивающимся эпидермисом, волосами, ногтями), т.е. поддерживается состояние азотного равновесия. Позитивный азотный баланс наблюдается у детей в связи с процессом роста, а также у выздоравливающих после тяжелых заболеваний. Негативный азотный баланс возникает при преобладании процессов катаболизма белка над процессами синтеза (полное или частичное голодание, потребление низкобелковых рационов, анорексия, рвота), а также при нарушении абсорбции белка в пищеварительной системе или их усиленном распаде вследствие заболеваний туберкулёз, опухоли, ожоговая болезнь и др.

Основные функции белков в организме:

1. Пластическая – участвуют в процессах образования живой материи, входя в состав нуклеопротеинов.

2. Опорная – выполняют белки костей, хрящей.

3. Сократительная – выполняют актиновые и миозиновые филаменты (элементы белковой природы).

4. Каталитическая – выполняют ферменты, которые в свою очередь являются белками.

5. Защитная (антитоксическая) – в основном участвуют антитела, которые образуются во время поступления в организм чужеродных веществ.

6. Коагулятивная – происходит при участии белков плазмы крови, которые препятствуют большим кровопотерям.

7. Транспортная – участвует белок гемоглобина и некоторые белки плазмы крови, которые транспортируют кислород и питательные вещества к тканям организма человека.

8. Возбуждения и торможения – осуществляют некоторые гормоны белковой природы и их производные.

Таким образом осуществляется их регуляторная функция. Для нормальной жизнедеятельности организма человека и хорошего усвоения пищи, человеческий организм должен получать все питательные вещества в определенных соотношениях. Например, нормальное соотношение белков, жиров и углеводов должно быть 1:1,1:4,1 для молодых мужчин и женщин, занятых умственным трудом, и 1:1,3:5 для тех же людей, если они заняты тяжелым физическим трудом. Эти вещества не имеют одинаковой питательной ценности, и каждая из них имеет свое особенное значение для организма.

При условии дефицита в рационе углеводов и липидов, белок используется как источник энергии. При окислении 1 г белка, выделяется 4 ккал тепловой энергии.

Для изучения потребности организма в белках вычисляют их баланс, то есть, сравнивают количество белков, которое поступило в организм, с количеством выделенных продуктов их распада.

Биологическая ценность белков определяется аминокислотным составом, в частности наличием незаменимых аминокислот, их соотношением и интенсивностью взаимодействия их с пищеварительными ферментами. Чем выше биологическая ценность пищи, тем больше она соответствует физиологическим потребностям организма.

Белки в зависимости от их биологической ценности разделяются:

1. Полноценные (биологически ценные белки) – содержат все незаменимые (эссенциальные) аминокислоты.

2. Неполноценные (биологически менее ценные белки) – проявляют дефицит одной или нескольких незаменимых аминокислот.

Незаменимые аминокислоты не синтезируются в организме, а поступает только с пищей. К эсенциальным аминокислотам относятся: метионин, лизин, триптофан, фенилаланин, лейцин, изолейцин, треонин и валин, а также гистидин и аргинин, которые не синтезирует детский организм.

Поступление заменимых аминокислот в организм должно быть также в достаточном количестве, так как при их недостатке в рационе для образования белков тканей используются в большем количестве незаменимые аминокислоты. Таким образом, большое значение имеет не только сбалансированность заменимых и незаменимых аминокислот, но и их соотношение.

Нормы употребления незаменимых аминокислот, которые обеспечивают их сбалансированность следующие (г/сутки): триптофана – 1, лейцина – 4 − 6, изолейцина – 3 − 4, метионина – 2 − 4, фенилаланина – 2 − 4, лизина – 3 − 5, треонина – 2 − 3, валина – 4, гистидина – 1,5 − 2, аргинина – 6.

Нормы потребления заменимых аминокислот (г/сутки): цистеина – 2 − 3, тирозина – 3 − 4, аланина – 3, серина – 3, глутаминовой кислоты – 16, аспарагиновой кислоты – 6, пролина – 5, глицина – 3.

Установленные уровни употребления не являются постоянными. Потребность в них возрастает во время беременности, инфекционных заболеваниях, недостатке витаминов, тяжёлых физических нагрузках.

Источниками биологически ценных продуктов является молоко и молочные продукты, яйца, мясо, рыба, печень и субпродукты первой категории. Продукты растительного происхождения по отношению к биологической ценности, значительно уступают продуктам животного происхождения.

Важным показателем биологической ценности белков является их свойство подвергаться гидролизу в желудочно-кишечном тракте. Белки животного происхождения перевариваются лучше, чем растительного. В среднем, белки пищи животного происхождения усваиваются на 97 %, растительного – только на 83 −85 %. Это обусловлено значительным содержанием балластных веществ в продуктах растительного происхождения. Для более полного использования белков организмом необходимо ликвидировать их антипротеазную, антивитаминную активность и аллергизованное действие, что достигается достаточной тепловой обработкой. Чрезмерная тепловая обработка (например, жарка) ухудшает усваиваемость белков вследствие их чрезмерной денатурации, которая усложняет проникновение ферментов.

Во время выбора источников белка в пищевом рационе следует учитывать, что при наличии в них нуклеопротеинов, в пищевом тракте высвобождаются нуклеиновые кислоты. Конечным продуктом обмена этих соединений в тканях является мочевая кислота. Из-за плохой растворимости она может задерживаться в организме, особенно если ограничена физическая активность, что способствует развитию подагры.



Loading...Loading...