Максимальный ток нагрузки аккумулятора. Пусковой ток аккумулятора

Разряд аккумулятора - наиболее важный режим работы аккумулятора, при котором потребители обеспечиваются током. Процесс разряда аккумулятора описывается электрохимической реакцией:

Образуется сульфат свинца и вода, поэтому по мере разряда аккумулятора плотность электролита уменьшается.

Характер протекания разряда зависит от очень многих характеристик, описывающих состояние аккумулятора и внешних факторов. Все многообразие режимов разряда аккумулятора описывается сравнительно небольшим набором разрядных характеристик.

Разрядные характеристики аккумулятора

Основными разрядными характеристиками являются изменяющиеся за время разряда при постоянном нормальном токе разряда следующие величины:

  • - ЭДС покоя - ЭДС, изменяющаяся линейно в процессе разряда от 2.11 В до 1.95 В;
  • - плотность электролита - изменяется от 1.28 до 1.11 г/см3;
  • - напряжение аккумулятора: начальное равно 2.11 В, конечное напряжение разряда - 1.7 В;
  • - разрядный ток;
  • - разрядная емкость аккумуляторной батареи.

Первые три характеристики не нуждаются в дополнительных пояснениях. Остановимся на последних двух.

Разрядная емкость - это количество электричества, отдаваемое аккумулятором при разряде.

Однако емкость аккумулятора зависит от условий разряда. Пожтому само понятие емкости связывают с условиями разряда. Такое понятие емкости является сопоставительной характеристикой.

Разрядной емкостью аккумулятора назвают количество электричества, отдаваемое аккумулятором при разряде нормальным током.

Нормальным разрядным током является ток 10-часового режима разряда.

Наряду с этим используется величина разрядного тока 20-часового режима разряда. Большинство заводов-изготовителей указывают емкость батареи в 20-часовом режиме разряда.

На графиках зависимости напряжения от времени при разряде постоянным по величине током наблюдается снижающаяся практически прямая линия, а в конце разряда напряжение линейно и быстро уменьшается. Ниже 1.7 В аккумулятор разряжать не следует.

Степень разряженности аккумулятора можно характеризовать относительной остаточной емкостью.

Относительная остаточная емкость определяется как количество электричества, которое аккумулятор способен отдать при нормальном токе разряда, начиная с данного момента времени, деленное на емкость этого же исправного и полностью заряженного аккумулятора.

Qост. отн. достаточно полно характеризует энергетическое состояние аккумулятора в данный момент эксплуатации.

Например, если аккумулятор не изношен, имеет наибольшую емкость и полностью заряжен, то Qост. = Qмакс.

и следовательно аккумулятор имеет остаточную относительную емкость, равную 100%.

Однако, например, если аккумулятор сильно засульфатирован, заряжается до 2.7 В при интенсивном газовыделении (полностью заряжен) и в состоянии отдать при нормальном токе разряда.

Разумеется, относительная разрядная емкость аккумулятора зависит от многих факторов, определяющих состояние аккумулятора в текущий момент времени эксплуатации. Это, в основном:

  • - степень заряженности аккумулятора;
  • - плотность электролита;
  • - температура электролита;
  • - режим заряда.

Необходимо строгое и правильное соответствие между этими зарядными и разрядными характеристиками. Поэтому Qост. отн. - важная диагностическая характеристика. Зная ее, можно избежать закритических, аварийных режимов эксплуатации аккумулятора.

Например, если Qост. отн. = 75%, а температура электролита - 25 С, то стартерный режим работы аккумулятора уже является закритическим, т.е. плотность электролита должна быть строго определенной при данных температуре и степени заряженности аккумулятора. Степень заряженности аккумулятора должна быть полной без перезаряда и недозаряда.

Режим разряда выбирать в соответствии с состоянием аккумулятора (это условие часто нарушается, особенно в холодное время года, при длительном пользовании стартером в попытке запустить особенно неисправный двигатель). Если этим пренебречь, то можно разморозить аккумуляторную батарею или некоторые (наиболее разряженные) ее аккумуляторы.

Таким образом, зная основные разрядные характеристики аккумулятора, их взаимозависимость и влияние на остаточную емкость аккумулятора, можно уберечь аккумулятор от преждевременного износа и выхода из строя.

Напомним еще раз главные негативные факторы разряда, резко снижающие срок службы аккумулятора:

  • - глубокий разряд;
  • - постоянный режим недозаряда;
  • - несоответствие норме плотности электролита;
  • - засульфатированность пластин;
  • - чрезмерные (закритические) токи разряда.

На величину разрядной емкости аккумулятора оказывает влияние плотность электролита. Однако концентрация серной кислоты в стартерных аккумуляторах обусловлена не соображениями получения максимальной емкости, а связана с другими факторами: срок службы, ток саморазряда, работоспособность при низких температурах.

Поэтому следует придерживаться основных правил: аккумуляторная батарея должна быть полностью заряженной (лучше реверсивным током), а концентрация электролита соответствовала установленной норме.

Разрядная емкость батареи сильно зависит от тока разряда и температуры электролита. В большинстве случаев заводы-изготовители указывают емкость аккумуляторной батареи для 20-часового режима разряда при Т=25 С. Т.е. ток разряда, например, аккумуляторной батареи емкостью Q=60А. ч равен

Iр = 60/20 = 3А

Однако этот же аккумулятор имеет разрядную емкость при токе 200А (стартерный режим разряда) не более 20 А. ч. Т.е. в таком режиме аккумулятор разряжается ниже допустимых значений за время

Тр = 20/200 = 0.1 часа = 6 минут

При снижении температуры разрядная емкость аккумуляторной батареи также сильно уменьшается. Это в значительной мере зависит от конструкции аккумулятора, однако большинство аккумуляторов, например, при - 10 С имеют емкость в 2 раза меньшую, чем при +25 С. Этим объясняется затрудненное проворачивание коленвала стартером в зимних условиях (помимо возросшей механической нагрузки из-за загустения смазки).

Разрядные характеристики позволяют определить состояние аккумулятора и не допускать его эксплуатации за пределами допустимых значений характеристик.

Особенно недопустимы режимы глубокого (ниже практического при U=1.7В) разряда и систематического недозаряда. При этом стартерные токи разряда быстро разрушают пластины. Степень разряженности аккумуляторной батареи можно определить по плотности электролита.

При проверке аккумуляторной батареи нагрузочной вилкой можно определить степень разряженности каждого аккумулятора в зависимости от напряжения.

Эксплуатайионный период аккумуляторной батареи обычно не превышает четыри года, поэтому рано или поздно перед автомобильными владельцами встаёт вопрос о выборе новой батареи для машины. Но как понять какого типа аккумулятор выбрать? Какими характеристиками руководствоваться? И где найти их описание? Об этом мы сегодня Вам и расскажем.

АКБ и её типы

Существует несколько основных типов аккумуляторных батарей, которые различаются материалом, из которого изготовлены электроды, и составом электролита. Многие из Вас знают, что есть различные никель-кадмиевые, никель-металлгидридные, литий-ионные, свинцово-кислотные аккумуляторы. Из данного списка для применения в качестве стартерных используются лишь одни – свинцовые. Это обуславливается тем, что этот тип аккумуляторных батарей наделён максимально большим запасом электроёмкости, в сравнении с другими, и способен мгновенно отдавать большую силу тока.

Но при всём этом, приходится мириться с тем, что их наполнение очень вредно, ведь это свинец и кислота. Чтобы обеспечить максимальную безопасность эксплуатирования свинцовых аккумуляторов, их корпуса изготавливают из специальной пластмассы, усточивой к воздействию кислоты. Сегодня материалом, из которого изготавливются электроды является свинец, не в чистом виде, конечно, но с различными добавками, от которых и зависит уже дальнейшее деление аккумуляторов на несколько типов:

- Традиционные, которые ещё называют сурьмянистые;

Малосурьмянистые;

Кальциевые;

Гибридные;

Гелевые или AGM;

Щелочные;

Традиционные или сурьмянистые

Аккумуляторные батареи данного типа в составе свинцовых электродов содержат ещё и 5% сурьмы. Их называют ещё просто классическими или традиционными. Но на сегодняшний день актуальность этих названий уже не имеет прямого смысла, ведь содержание сурьмы уменьшилось в разы. Сурьму добавляют в сплав в состав электродов для повышения их прочности. Но эта добавка также ускоряет процесс электролиза, начинающийся уже на отметке в 12 вольт. Выделяется большое количество газов и возникает ощущение кипячения воды. Из-за испарения воды в больших объёмах, электролит меняет свою концентрацию на более сильную из-за чего верхушка электродов оголяется. Для того, чтобы восстановить водный баланс электролита, в него добавляют дистиллированную воду.

Аккумуляторы с большим содержанием сурьмяных добавок очень просты в обслуживании. Это обусловлено тем, что ежемесячно нужно проверять концентрацию электролита и по надобности заливать дистиллированную воду. В новых моделях автомобилей такие аккумуляторы уже не устанавливают, ведь прогресс стремительно шагает вперёд. Данные батареи устанавливают по прежнему на недвижимые установки, где важна неприхотливость и не возникают проблемы с обслуживанием источников питания. Автомобильные же аккумуляторы сейчас изготавливают без добавления сурьмы или же минимизируют её количество по максимуму.

Малосурьмянистые

Чтобы избежать сильного испарения воды из электролита, аккумуляторные пластины, как уже было сказано выше, стали делать с минимальными сурьмнистыми добавкам, количество которых не достигает отметки в 5%. В следствии чего частая необходимость проверки электролита на уровень концентрации канула в лету. Также снизился саморазряд при длительном хранении аккумуляторной батареи.

Такой тип аккумуляторов относится к тем, что мало обслуживаются или не обслуживаются вовсе. Обосновывается это тем, что внутренности батареи не нуждаются в контроле и уходе. Хотя по сути такой термин как «необслуживаемый» относится к нереализованной теории или скорее всего к хитрым маркетинговым операциям, ведь не достигли ещё того уровня, при котором вода из электролита вовсе не выкипает. Она понемногу да испаряется всё равно, хотя и в значительно меньших объёмах, чем у тех аккумуляторах, которые называют обслуживаемыми.

Кальциевые

Производители всё бьются над тем, как сделать полностью необслуживаемую батарею, чтобы вода в ней не испарялась вовсе. Для этого сурьму в решётках электродных пластин заменили на другой, более подходящий, материал. Таковым оказался кальций. Аккумуляторы кальциевого типа зачастую маркированы буквами «Ca/Ca». Такое обозначение говорит автовладельцам о том, что пластины обоих полюсов имеют в своём составе кальций.

К тому же в состав электродов порой добавляют и серебро в очень малых количествах. Благодаря этому снижается сопротивление внутри аккумулятора, что хорошо сказывается на его производительности и энергоёмкости. Кальций в составе свинцовых пластин прекрасно справился с задачей снижения газовыделения и утраты воды, что ставит этот тип на порядок выше малосурьмянистых батарей. Потеря воды за время эксплуатации батареи настолько мизерна, что необходимость в проверке концентрации электролита и его уровня в банках, просто стала ненужной.

Таким образом аккумуляторные батареи кальциевого типа можно по праву называть необслуживаемыми. Кроме меньшей потери воды, кальциевые аккумуляторы ещё имеют и на 70% более низкий, по сравнению с предыдущими оппонентами, уровень саморазряда. Что позволяет этим батареям более длительный срок удерживать на уровне свои эксплуатационные качества. Такие аккумуляторы устанавливают на заводах по производству иностранных автомобилей среднего ценового сегмента, где производитель смело гарантирует стабильность и качество электрического оборудования.

Но покупая аккумулятор данного типа, знайте, что уход за ним требуется более тщательный чем малосурьмянистому. Но при должном обслуживании у Вас будет надёжный и стабильный источник питания высокого качества.

Гибридные

Маркируется тип данных аккумуляторов как «Ca+». Гибридные аккумуляторные батареи имеют электродные пластины, которые созданы с использованием различных технологий: положительные электроды малосурьмянистые, а отрицательные уже идут кальциевые. Такая технология позволила совместить потожительные стороны обоих типов в одном аккумуляторе. Вода в гибридных батареях расходуется на 50% медленнее чем у малосурьмянистых, но всё равно быстрее чем у кальциевых аккумуляторов. Но зато гибриды гораздо устойчивы к перезарядам. По своим характеристикам они по праву занимают нишу между двумя предыдущими представителями.

Гелевые или AGM

Банки гелевых аккумуляторных батарей наполнены электролитом не в понятном нам жидком состоянии, а в гелеобразном, фиксированном, откуда и пошло название данного типа. Благодаря такому состоянию электролита, этим аккумуляторам не страшны наклоны, ведь гель не так ликвиден, как жидкость. Хотя это снова профессиональный «заманушный» маркетинговый ход, и переворачивать аккумуляторы с гелевым наполнением лучше не стоит. Хоть производители и пишут, что такие аккумуляторы можно эксплуатировать в любом удобном положении.

На прекрасной виброустойчивости не заканчиваются положительные стороны AGM аккумуляторов. Они также медленно саморазряжаются, благодаря этому они переносят длительное хранение не боясь критического снижения заряда. Организовывать их хранение следует в полностью заряженном состоянии.

Сила тока, подаваемая АКБ, в зависимости от заряда, неизменна даже до полной разрядки. Им так же не страшен и переразряд, они полностью восстанавливают свою прежнюю ёмкость даже после подзарядки. Но с зарядом батарей гелевого типа ситуация состоит не так гладко как с разрядом. Нельзя ускоренно заряжать такие батареи. Их зарядка должна происходить очень малым током. Для этого выпускаются даже зарядные устройства, специально адаптированные под зарядку именно гелевых аккумуляторов.

Хотя рынок богат на универсальные зарядные устройства, которые по плану должны заряжать любые типы аккумуляторных батарей. Насколько это всё действительно правда, однозначно ответить нельзя, ведь производители бывают разные и лучше обращать внимание на тех, которые уже устоялись на рынке и крепко себя зарекомендовали.

Отрицательной стороной гелевых батарей является их «боязнь» экстремально низких температур. Чем ниже температура окружающей среды, тем ниже становится проводимость гелевого электролита. Если условия эксплуатации благоприятны, такие аккумуляторные батареи могут прослужить и десяток лет.

Щелочные

Знаете ли Вы, что электролит в аккумуляторах может иметь не только кислотную, но и щелочную составляющую? И таких аккумуляторов существует множество разновидностей, но мы возьмём на рвссмотрение лишь те, которые применяются в автомобилях.

А вот автомобильные щелочные батареи бывают лишь двух типов: никель-кадмиевые и никель-железные. Батареи первого типа имеют положительные электроды, покрытые гидроксооксидом никеля NiO(OH), а отрицательные электроды - железом с примесью кадмия. Во второй разновидности батарей, положительные электроды покрыты идентично с теми, что находятся в никель-кадмиевой батарее, то есть гидроксооксидом никеля. А вот в отрицательном электроде уже присутствуют различия, здесь он выполнен из чистого, без примесей, железа. Щелочным электролитом в обоих типах батарей есть раствор едкого калия.

Данный и последний в нашем списке тип аккумуляторных батарей считается наиболее перспективным на сегодняшний день. В состав электролита данного типа аккумуляторов входят ионы лития. О том, из какого материала состоят электродные пластины, однозначно сказать не получится, ибо технология изготовления всё время движется вперёд. Однако, мы знаем, что изначально они производились тз металлического лития, но из-за их взрывоопасности, такие электроды использовать перестали. На их смену пришли графитовые пластины. Для положительно заряженных электродов использовался оксид лития с добавлением кобальта или марганца. Но в нынешнее время происходит их замещение на литий-ферро-фосфатные, ибо новый материал гораздо менее токсичен, более доступен и экологически чист. Такие пластины можно спокойно утилизировать.

Постоянно идёт работа по усовершенствованию имующихся типов аккумуляторов, и она непрерывна. В центрах исследований и испытаний неустанно трудятся над поиском более энергоёмких источников питания компактных размеров. Для регионов с экстремалными зимами, пригодилось бы изобретение батарей устойчивых к сильным морозам, тогда бы решилась проблема с отказом мотора. Так же важно движение и в сторону экологичности. Ведь сегодня пока ещё не научились производить полностью экологичные аккумуляторные батареи.

Нельзя пока что обходиться без добавления токсичных элементов, таких как, например, свинец, щёлочь, серная кислота. Но у традиционных аккумуляторов, будущее скорее всего закрыто. Промежуточным эволюционным этапом являются гелевые батареи. Аккумулятор будущего видят без наполнения жидкостью, произвольной формы, а также с множеством других параметров, которые избавят автовладельцев от переживаний относительно того, не вылился ли электролит, а не откажет ли батарея. Водитель должен наслаждаться поездкой.

Технические характеристики: вес, сила тока, емкость, напряжение

Важнейшими показателями качества аккумуляторных батарей выступают: напряжение, вес, ёмкость, габариты, номинальная глубина разряда, срок службы, коэффициент полезного действия, диапазон рабочих температур, допустимый ток заряда и разряда. Также учитывайте тот факт, что указанные производителем характеристики действенны для температур 20-25 градусов по Цельсию. При отклонениях от этих чисел, они изменяются и зачастую не в лучшую сторону.

Значения напряжения и ёмкости зачастую используется в названии модели аккумуляторной батареи. Так, например, аккумулятор RA12200DG. Напряжение батареи 12 Вольт, её ёмкость 200 А/ч, гелевый электролит, глубокоразрядная. Эта батарея выдаёт энергию в 2,4 кВт, исходя из формулы 12 х 200 = 2400 Вт*ч при разряде током на протяжении десяти часов в 10% от всей ёмкости. При отклонениях в сторону большего тока и скорой разрядки, ёмкость такой батареи уменьшается. При меньших токах – наоборот, зачастую, увеличивается. Нужно смотреть на разрядные характеристики тех или иных батарей, которые Вас интересуют. Порой производители в названии указывают слишком идеальную ёмкость аккумуляторной батареи, которая возможно только в утопических условиях. Такие любители, например, Haze, у которых ёмкость в реальности на порядок ниже заявленной, а именно на 10-20 пунктов, а это значительно, согласитесь.

Ёмкость батареи

Количество энергии, которую в себе может хранить аккумуляторная батаре и называется её ёмкостью. Её измеряют в ампер-часах А/ч. Например один аккумулятор с ёмкостью в 100 ампер-часов может подавать ток с силой в 1 ампер напротяжении 100 часов, или током в 5 ампер 20 часов и так далее. Хотя ёмкость батареи уменьшается, если увеличивается разрядный ток. На рынке можно приобрести аккумуляторы с ёмкостью от 1 до 2000 А/ч.

Срок службы

Для того, чтобы продлить срок эксплуатации свинцовой аккумуляторной батареи, лучше использовать лишь небольшую часть её ёмкости до повторной подзарядки. Каждый процесс, который сопровождается разрядом и дозарядом аккумулятора называется зарядным циклом, причём проводить полный разряд аккумулятора не обязательно. Допустим, Вы разрядили аккумулятор на четверть, а потом его снова зарядили, то у него произошёл один зарядный цикл. Но количество циклов будет напрямую зависить от глубины разряда.

Если аккумулятор можно разряжать более чем на половину от его номинальной ёмкости без значительного ухудшения его параметров, то такой агрегат называется «глубокоразрядным». Аккумуляторная батарея может быть повреждена, если её перезарядить больше чем необходимо. Максимальное напряжение, подаваемое на кислотную батарею в 12 вольт, не должно превышать 15 ватт. Значительная часть фотоэлектрических аккумуляторов обладают мягкой нагрузочной характеристикой, поэтому с увеличением напряжения зарядный ток значительно снижается. Допустим, для солнечных батарей всегда нужно применять определённый контроллер заряда. Так же его применение необходимо и для ветроэлектростанций и микрогидроэлектростанций.

Напряжение

Аккумуляторное напряжение – это зачастую основной параметр, следя за которым можно определять то насколько заряжена аккумуляторная батарея и в каком состоянии она находится. Особенно это касается аккумуляторов в герметичной оболочке, у которых физически невозможно, не повредив их, измерить концентрацию электролита. Для того, чтобы определить насколько , его напряжение измеряют на клеммах в течении 4-5 часов в отсутствие зарядного и разрядного токов.

Напряжение измеряемое во время заряда или при разряде батареи ничего не скажет о том, насколько заряжен аккумулятор. Зависимость того насколько заряжен аккумулятор от напржения на нём вхолостом режиме различно у разных типов батарей. Для аккумуляторов, которые являются герметизированными, например, гелевых немного больше чем у тех типов, которые имеют в себе жидкий электролит. Например аккумулятор типа AGM считается полностью заряженным, если напряжение на его равно 13 ватт, в то время как у кислотных аккумуляторов оно равно 12,5 ватт.

Степень заряженности

Степень того насколько заряжена аккумуляторная батарея зависит от множества факторов. И точно определить заряд аккумулятора в состоянии лишь специальные приспособления с памятью и микропроцессором. Они следят за зарядом и разрядом батареи на протяжении нескольких зарядных циклов. Использование данного метода даст Вам самые точные показания о заряженности аккумулятора, но так же и отнимет немалую сумму денег. Но не стоит скупиться на применение данного метода, ведь Вы сможете изюежать лишних трат при дальнейшем обслуживании и замене аккумуляторной батареи. Применяя специальные устройства, что контролируют работу батарей по степени их заряда, Вы заметно повысите эксплуатационный период своего свинцово-кислотного аккумулятора.

Для определения того насколько заряжена аккумуляторная батарея Вашего автомобиля успешно используются и два следующих метода, которые являются упрощёнными.

Напряжение на аккумуляторе

Этот способ не отличается сильной точностью, но для его применения необходимо наличие лишь цифрового вольтметра, с чувствительностью до сотой доли вольта. Перед тем как приступать к измерениям, необходимо будет отсоединить аккумуляторную батарею от всех потребителей электроэнергии, которые разряжают её и от устройств, её заряжающих. Подождать не менее двух часов и приступать к измерению на терминалах аккумулятора. У заряженной на 100% гелевой батареи напряжение будет составлять 13 ватт против 12,5 ватт у жидкоэлектролитных аккумуляторов. По мере того, как аккумуляторная батарея начинает состариваться, её напряжение снижается. Напряжение можно измерять как на всём аккумуляторе, так и на каждой банке. Чтобы найти неисправную, например в 12-ти вольтовом аккумуляторе, нужно разделить общее напряжение на количество банок, в данном случае 6.

Плотность электролита

Следующий метод проверки заряженности батареи - по плотности электролита. Как уже стало ясно, он подходит только для аккумуляторов с жидким наполнителем, для гелевых, например, его применить, априори, нельзя. Также, как и в первом способе, перед началом замеров нужно подождать не менее двух часов. Замеры производятся ареометром. Важно! Перед началом процедуры обязательно обезопасьте себя, надев перчатки и пластиковые защитные очки. Держите под рукой соду и воду на тот случай, если электролит попадёт на кожу.

Срок службы аккумуляторов

Эксплуатационный срок определять временными отрезками – не совсем правильно. Срок службы аккумулятора исчисляется зарядными циклами и зависит он напрямую от эксплуатационных условий. Чем больше глубина разряда аккумуляторной батареи и чем дольше она находится в разряженном состоянии, тем значительнее сокращается количество её рабочих циклов.

Как мы уже поняли, что понятие количества зарядных циклов абсолютно относительно, ибо зависит напрямую от множества факторов. Кроме этого количество жизненных циклов одного аккумулятора не будет таким же у другого, это понятие не универсальное. Ведь всё зависит опять же от факторов эксплуатации и технологии производства, которая различается у того или иного производителя. Запомните, что срок эксплуатации аккумулятора исчисляется зарядными циклами, а временные отрезки приблизительно расчитываются в тех случаях, если аккумулятор эксплуатируется постоянно в типичных условиях.

Ещё одним важным моментом есть то, что аккумуляторная полезная ёмкость уменьшается в процессе эксплуатирования аккумулятора. Все характеристики по числу циклов определяются не до полной кончины батареи, а до потери им 40; от его номинальной ёмкости. Например, если производитель указал количество в 600 циклов при заряде равном половине его ёмкости, это означает, что через 600 идентичных циклов в идеальных условиях, полезная ёмкость батареи будет составлять 60% от заводской. И уже при такомзначении ёмкости производители рекомендуют производить замену аккумуляторной батареи. У свинцово-кислотных аккумуляторов срок службы колеблется от 300 и до 3000 циклов, в зависимости от того каков тип и глубина разряда батареи.

Для того, чтобы обеспечить длительный срок эксплуатации, разряд аккумулятора в типичном цикле не должен превышать 30% , а глубокий разряд – 80% ёмкости. Если свинцово-кислотный аккумулятор разрядился, его необходимо чем быстрее зарядить. Если такой аккумулятор более 12-ти часов находился в полностью разряженном или недозаряженном состоянии, то последствия случившиеся с ним могут быть необратимы и срок его эксплуатации резко снизится.

Как же определить, что аккумуляторная батарея уже близится к своему пределу? Всё очень просто. Внутреннее сопротивление аккумулятора резко повышается, что приводит к скачку напряжения при заряде, в следствии чего снижается и период самой зарядки и более быстро происходит разрядка батареи. Если Вы станете заряжать умирающий аккумулятор током, который близок к предельному, то он будет сильно греться, гораздо сильнее чем ранее.

Максимальные токи заряда и разряда

Токи заряда и разряда любого аккумулятора измеряются в зависимости от его ёмкости. Как правило максимальный зарядный ток для аккумуляторной батареи не стоит превышать более 0,3С. Превышение заряда тока приведёт к снижению эксплуатационного срока аккумуляторной батареи.Мы же рекомендуем выставлять зарядный ток не более чем 0,2С.

Саморазряд

Саморазряд, как явление характерен для всех типов аккумуляторных батарей в меньшей или большей степени и заключается в утрате ими своих ёмкостных характеристик после того, как они полностью зарядились в отсутствие внешнего потребителя энергии. Для того чтобы удобно было количественно оценить саморазряд аккумуляторной батареи, будет удобным использование величины потерянной ёмкости за определённый период времени, которая процентно выражается от значения, которое получено сразу после полного заряда. За временной промежуток, как правило берётся интервал, который равен одним суткам или одному месяцу.

Например, если взять исправный аккумулятор NiCD, то допустимый саморазряд у них равняется 10% в сутки, после окончания зарядки. Для NiMH батарей – чуть больше, а для Li-ION совершенно мал и оценивается за месяц. В свинцовых же батареях саморазряд уже исчисляется годами, ибо он гораздо уменьшен и составляет 40% в год при температуре в 20 градусов по Цельсию и 15% при температуре в 5 градусов. Если температура хранения значительно выше, то следовательно и саморазряд происходит быстрее.

Например при температуре в 40 градусов аккумуляторная батарея лишится своих 40% ёмкости уже за 5 месяцев. Отметим, что аккумулятор сильно саморазряжается только в первые сутки после заряда, а после он значительно утихает. Если аккумулятор подвергается глубокому разряду и последующему заряду, то это усугубляет его саморазряд. Процесс саморазряда набирает силу при повышенных температурах. Так, например, если окружающая температура резко подымется на 10 градусов, по отношению к привычной, то саморазряд увеличится в два раза.

Ёмкость может растрачиваться и в случае повреждения сепаратора, когда кристаллы слипаютс, образуя большой ком, пробивающий его. Сепаратор в аккумуляторе – это тонкая пластина, которая разделяет электроды с положительным и отрицательным зарядами. Такое случается при неверном обслуживании аккумуляторной батареи или вообще его отсутствии. Так же это может произойти, если применять некачественные устройства для зарядки или те, которые не соответствуют необходимым параметрам. Если аккумулятор изношен, то его электродные пластины слипаются друг с другом из-за их разбухания. Это и приводит к ускоренному саморазряду. На такой стадии повреждённый сепаратор уже не поддаётся восстановлению путём проведения заряда/разряда.

Маркировка – узнаем емкость заряда, силу тока и другие параметры

существует для того, чтобы Вы, как покупатель, могли получить детальную необходимую информацию о всех нужных технических характеристиках интересующей Вас аккумуляторной батареи. В неё входят: тип аккумулятора, товарный знак и дата производства, вес и соответствие ГОСТу. Также указывается и количество объединённых аккумуляторов в единую батарею, как правило их должно быть 3 либо 6. Буквы «Ст» говорят Вам о том, что Вы наблюдаете перед собой стариерный аккумулятор. В зависимости от материала изготовления корпуса моноблока, указывается соответствующая буква:

Э – эбонит;

П – асфальтопековая пластмасса;

Т – термопласт.

Также важен и материал, из которого изготавливаются сепараторы. Если в маркировке присутствует заглавная буква «Р» , то это мипора, буква «М» указыват на мипласт, а «С» - это стекловолокно.

Напряжение, как таковое, не указывается в маркировке аккумуляторной батареи, оно попросту не обязательно, ведь оно является стандартной величиной, которую можно замерить обычной нагрузочной вилкой. Обращайте также своё внимание и на наличие буквы «З», если она есть. При её наличии это указывает на батарею залитого типа, которая заряжена полностью. Если же эта буква отсутствует, то аккумуляторная батарея – сухозаряженная.

Из опыта эксплуатации

NiMH элементы широко рекламируются, как элементы с высокой энергоемкостью, не боящиеся холода и не имеющие памяти. Купив цифровую фотокамеру Canon PowerShot A 610 , я естественно снабдил ее емкой памятью на 500 снимков высшего качества, а для увеличения продолжительности съемок купил 4 NiMH элемента емкостью 2500 ма* час фирмы Duracell .

Сравним характеристики выпускаемых промышленностью элементов:

Параметры

Ионно-литиевые
Li-ion

Никель-кадмиевые NiCd

Никель-
металл-гидридные NiMH

Свинцово-кислотные
Pb

Длительность службы, циклов зарядки/разрядки

1-1,5 года

500-1000

3 00-5000

Энергетическая емкость, Вт*ч/кг
Ток разряда, мA*емкость аккумулятора
Напряжение одного элемента, В
Скорость саморазряда

2-5% в месяц

10% за первые сутки,
10% за каждый последующий месяц

в 2 раз выше
NiCd

40% в год

Диапазон допустимых температур, градусы Цельсия зарядки
разрядки -20... +65
Диапазон допустимых напряжений, В

2,5-4,3 (коксовые) , 3,0-4,3 (графитовые)

5,25-6,85 (для батарей 6 В),

10,5-13,7 (для батарей 12 В)

Таблица 1.

Из таблицы видим NiMH элементы обладают высокой энергетической емкостью, что делает их предпочтительными при выборе.

Для ихзарядки было куплено интеллектуальное зарядное устройство DESAY Full-Power Harger обеспечивающее зарядку NiMH элементов с их тренировкой. Элементы оно заряжались качественно, но... Однако на шестой зарядке оно приказало долго жить. Выгорела электроника.

После замены зарядного устройства и нескольких циклов заряд-разряд, аккумуляторы стали садиться на втором - третьем десятке снимков.

Оказалось, что не смотря на заверения, NiMH элементы тоже обладают памятью.

А большинство современных портативных устройств их использующих, имеют встроенную защиту, отключающую питание при достижении некоторого минимального напряжения. Это не позволяет выполнить полную разрядку аккумулятора. Тут и начинает играть свою роль память элементов. Не полностью разряженные элементы получают неполный заряд и их емкость падает с каждой перезарядкой.

Качественные зарядные устройства позволяют выполнять зарядку без потери емкости. Но что-то я не смог найти в продаже такого для элементов емкостью 2500маh . Остается периодически проводить их тренировку.

Тренировка NiMH элементов

Все написанное ниже не относится к элементам аккумуляторной батареи имеющим сильный саморазряд . Их можно только выбросить, опыт показывает, тренировке они не поддаются.

Тренировка NiMH элементов заключается в нескольких (1-3) циклах разрядки - зарядки.

Разрядка выполняется до снижения напряжения на аккумуляторном элементе до 1В. Желательно разряжать элементы индивидуально. Причина в том, что способность принимать заряд может быть различна. И она усиливается при зарядке без тренировки. Поэтому происходит к преждевременное срабатывание защиты по напряжению вашего устройства (плеера, фотоаппарата, ...) и последующей зарядке неразряженного элемента. Результат этого нарастающая потеря емкости.

Разрядку необходимо выполнять в специальном устройстве (Рис.3), которое позволяет выполнять ее индивидуально для каждого элемента. Если нет контроля напряжения, то разрядка выполнялась до заметного снижения яркости лампочки.

А если Вы засечете время горения лампочки вы сможете определить емкость аккумулятора, она вычисляется по формуле:

Емкость = Ток разрядки х Время разрядки = I х t (А * час)

Аккумулятор емкостью 2500 ма час способен отдавать в нагрузку ток 0,75 А в течении 3,3 часа, если полученное в результате разрядки время меньше, соответственно и меньше остаточная емкость. И при уменьшении емкости Вам необходимой надо продолжить тренировку аккумулятора.

Сейчас для разрядки элементов аккумуляторов я применяю устройство изготовленное по схеме показанной на рис.3.

Оно изготовлено из старого зарядного устройства и выглядит так:

Только теперь лампочек 4 штуки, как в рис.3. О лампочках надо сказать отдельно. Если лампочка имеет ток разрядки равный номинальному для данного аккумулятора или несколько меньший ее можно использовать как нагрузку и индикатор, иначе лампочка только индикатор. Тогда резистор должен иметь такую величину, чтобы суммарное сопротивление El 1-4 и параллельного ей резистора R 1-4 было порядка 1,6 Ом.Замена лампочки на светодиод недопустима.

Пример лампочки которая может быть использована в качестве нагрузки - это криптоновая лампочка для карманного фонаря на 2,4 В.

Особый случай.

Внимание! Производители не гарантируют нормальную работу аккумуляторов при зарядных токах превышающих ток ускоренной зарядки I зар должен быть меньше емкости аккумулятора. Так для аккумуляторов емкостью 2500ма*час он должен быть ниже 2,5А.

Бывает, что NiMH элементы после разрядки имеют напряжение менее 1,1 В. В этом случае необходимо применить прием описанный в приведенной выше статье в журнале МИР ПК. Элемент или последовательная группа элементов подключается к источнику питания через автомобильную лампочку 21 Вт.

Еще раз обращаю Ваше внимание! У таких элементов обязательно надо проверить саморазряд! В большинстве случаев именно элементы с пониженным напряжением имеют повышенный саморазряд. Эти элементы проще выкинуть.

Зарядка предпочтительна индивидуальная для каждого элемента.

Для двух элементов напряжением 1,2 В зарядное напряжение не должно превышать 5-6В. При форсированной зарядке лампочка одновременно является индикатором. При снижении яркости лампочки можно проверить напряжение на NiMH элементе. Оно будет больше 1,1 В. Обычно, эта начальная, форсированная зарядка занимает от 1 до 10 минут.

Если NiMH элемент, при форсированной зарядке в течении нескольких минут не увеличивает напряжение, греется - это повод снять его с зарядки и отбраковать.

Рекомендую применять зарядные устройства только с возможностью тренировки (регенерации) элементов при перезарядке. Если нет таких, то через 5-6 рабочих циклов в аппаратуре, не дожидаясь полной потери емкости, производить их тренировку и отбраковывать элементы имеющие сильный саморазряд.

И они Вас не подведут.

В одном из форумов прокомментировали эту статью " написано тупо, но больше ничего нет ". Так Вот это не"тупо", а просто и доступно для выполнения на кухне каждому кто нуждается в помощи. Т.е. максимально просто. Продвинутые могут поставить контроллер, подключить компьютер, ...... , но это уже другая история.

Чтобы не казалось тупо

Существуют "умные" зарядники для NiMH элементов.

Такой зарядник работает с каждым аккумулятор отдельно.

Он умеет:

  1. индивидуально работать с каждым аккумулятором в разных режимах,
  2. заряжать аккумуляторы в быстром и медленном режиме,
  3. индивидуальный ЖК дисплей для каздого аккумуляторного отсека,
  4. независимо заряжать каждый из аккумуляторов,
  5. заряжать от одного до четырех аккумуляторов разной емкости и типоразмера (АА или ААА),
  6. защищать аккумулятор от перегрева,
  7. защищать каждый аккумулятор от перезарядки,
  8. определение окончание зарядки по падению напряжения,
  9. определять неисправные аккумуляторы,
  10. предварительно разряжать аккумулятор до остаточного напряжения,
  11. восстанавливать старые аккумуляторы (тренировка заряд-разряд),
  12. проверять емкость аккумуляторов,
  13. отображать на ЖК дисплее: - ток заряда, напряжение, отражать текущую емкость.

Самое главное, ПОДЧЕРКИВАЮ , данного типа устройства позволяют работать индивидуально с каждым аккумулятором.

По отзывам пользователей такое зарядное устройство позволяет восстановить большинство запущенных аккумуляторов, а исправные эксплуатировать весь гарантированный срок эксплуатации.

К сожалению я таким зарядником не пользовался, поскольку в провинции его купить просто невозможно, но в форумах Вы можете найти много отзывов.

Главное не заряжайте на больших токах, не смотря на заявленный режим с токами 0,7 - 1А, это все же малогабаритное устройство и может рассеять мощность 2-5 Вт.

Заключение

Любое восстановление NiMh аккумуляторов строго индивидуальная (с каждым отдельным элементом) работа. С постоянным контролем и отбраковкой элементов не принимающих зарядку.

И лучше всего заниматься их восстановлением с помощью интеллектуальных зарядных устройств, которые позволяют индивидуально выполнять отбраковку и цикл заряд - разряд с каждым элементом. А поскольку таких устройств автоматически работающих с аккумуляторами любой емкости не существует, то они предназначены для элементов строго определенной емкости или должны иметь управляемые токи зарядки, разрядки!

Автомобильный стартерный аккумулятор – это химический источник тока, действие которого основано на использовании обратимых электрохимических процессов. Простейший свинцовый аккумулятор состоит из положительного электрода, активным веществом которого является двуокись свинца (темно-коричневого цвета), и отрицательного электрода, активным веществом которого является губчатый свинец (серого цвета). Если оба электрода поместить в сосуд с электролитом (раствор серной кислоты в дистиллированной воде), то между электродами возникнет разность потенциалов.

При подключении к электродам нагрузки (потребителя) в цепи потечет электрический ток, и аккумулятор будет разряжаться. Во время разряда расходуется серная кислота из электролита и одновременно в электролит выделяется вода. Поэтому по мере разряда свинцового аккумулятора уменьшается концентрация серной кислоты, из-за чего плотность электролита понижается. При заряде происходят обратные химические реакции – в электролит выделяется серная кислота и расходуется вода. При этом плотность электролита по мере заряда возрастает. Поскольку при разрядах и зарядах изменяется плотность электролита, то по ее величине можно судить о степени заряженности аккумулятора, чем и пользуются на практике.

Основными электрическими характеристиками аккумулятора являются электродвижущая сила, напряжение и емкость.

Электродвижущей силой (э.д.с.) аккумулятора называется разность потенциалов между его электродами при разомкнутой внешней цепи. Величина э.д.с. исправного аккумулятора зависит от плотности электролита (степени его заряженности) и изменяется в пределах от 1,92 до 2,15 вольта.

Напряжением аккумулятора называется разность потенциалов между его выводами, измеренная под нагрузкой. За номинальное напряжение свинцового аккумулятора принимается величина, равная 2 вольта. Величина напряжения при разряде аккумулятора зависит от величины разрядного тока, продолжительности разряда и температуры электролита; она всегда меньше величины э.д.с. Разряжать аккумулятор ниже определенного предела, называемого конечным разрядным напряжением, недопустимо, так как это может привести к переполюсовке и разрушению активной массы электродов. Величина напряжения при заряде зависит главным образом от степени заряженности аккумулятора, температуры электролита и всегда больше величины э.д.с.

Емкостью аккумулятора называется количество электричества, отдаваемое полностью заряженным аккумулятором при его разряде до допустимого конечного разрядного напряжения. Емкость аккумулятора измеряется в ампер-часах и определяется как произведение величины разрядного тока (в амперах) на продолжительность разряда (в часах). Емкость аккумулятора зависит от количества активной массы (количества и размера электродов), величины разрядного тока, плотности и температуры электролита, срока службы аккумулятора и является его важнейшей эксплуатационной характеристикой. При больших величинах разрядных токов, при низких температурах электролита, а также в конце срока службы емкость, отдаваемая аккумулятором, снижается. За номинальную емкость аккумулятора принимается емкость, которую должен отдавать аккумулятор при разряде током 20-часового или 10-часового разряда, т.е. при величине разрядного тока, численно равной соответственно 0,05 и 0,1 величины номинальной емкости.

Стартерная автомобильная аккумуляторная батарея состоит из 6 одинаковых аккумуляторов, соединенных последовательно. При таком соединении номинальное напряжение батареи равно сумме номинальных напряжений отдельных аккумуляторов, и составляет 12 вольт, а номинальная емкость батареи остается такой же, как и емкость одного аккумулятора.

Приведение АКБ в рабочее состояние

Таблица 1. Количество воды и раствора кислоты для приготовления 1 л электролита
Требуемая
плотность
электролита,
г/см³
Количество
воды, л
Количество
раствора
серной кислоты,
плотностью
1,40 г/см³, л
1,20 0,547 0,476
1,21 0,519 0,500
1,22 0,491 0,524
1,23 0,465 0,549
1,24 0,438 0,572
1,25 0,410 0,601
1,26 0,382 0,624
1,27 0,357 0,652
1,28 0,329 0,679
1,29 0,302 0,705
1,31 0,246 0,760

Автомобильные аккумуляторные батареи, выпускаемые в сухозаряженном состоянии, для приведения в рабочее состояние необходимо залить электролитом и после пропитки электродов измерить плотность электролита и произвести подзарядку батареи. При температуре воздуха до -15°С в батареи заливают электролит плотностью 1,24 г/см³. При температуре от -15° до -30°С плотность повышают до 1,26, а при ниже -30° – до 1,28 г/см³.

Электролит требуемой плотности может быть приготовлен непосредственно из кислоты и воды. Однако более удобно применять раствор кислоты плотностью 1,40 г/см³. Количество воды и раствора, необходимое для приготовления 1 л электролита, указано в таблице 1. Серная кислота учитывается не в литрах, а в килограммах. Для перевода литров в килограммы необходимо пользоваться коэффициентом 1,83.

Плотность электролита измеряется с помощью ареометра. Он состоит из цилиндра с резиновой грушей и заборной трубкой и денсиметра (поплавка). При определении плотности электролита необходимо сжать рукой резиновую грушу ареометра, ввести конец заборной трубки в электролит и постепенно отпустить грушу. После того, как денсиметр всплывет, по его шкале определить плотность электролита в аккумуляторе. При измерениях надо следить за тем, чтобы денсиметр свободно плавал в электролите («не прилипал» к стенкам цилиндра).

Плотность электролита зависит от температуры. Исходной считается температура электролита 25°С. На каждые 15°С изменения температуры плотность изменяется примерно на 0,01 г/см³. Поэтому при измерении плотности электролита следует учитывать его температуру и в необходимых случаях вносить поправку к показаниям ареометра, пользуясь таблицей 2.

Заливать электролит в аккумулятор следует тонкой струей, применяя фарфоровую, полиэтиленовую или эбонитовую кружку и стеклянную, полиэтиленовую или эбонитовую воронку.

Таблица 2. Поправки к показаниям ареометра
Температура
электролита, С°
Поправка к
показаниям, г/см 3
От -55 до -41 -0,05
От -40 до -26 -0,04
От -25 до -11 -0,03
От -10 до 4 -0,02
От 5 до 19 -0,01
От 20 до 30 0,00
От 31 до 45 +0,01
ОТ 46 до 60 +0,02

Температура электролита должна быть не ниже 15°С и не выше 25°С. После заливки электролита и пропитки электродов не ранее чем через 20 минут и не позже чем через 2 часа производится контроль плотности электролита. Если плотность электролита понизится не более, чем на 0,03 г/см³ против плотности заливаемого электролита, батарея может эксплуатироваться. Если же плотность электролита понизится более, чем на 0,03 г/см³, батарея подлежит подзаряду. Продолжительность первого подзаряда зависит от срока хранения батареи в сухом виде с момента изготовления до приведения в рабочее состояние. Окончание подзаряда определяется по постоянству напряжения аккумулятора и плотности электролита в течение 2 часов.

Заряд аккумуляторных батарей

Аккумуляторные батареи заряжают при приведении их в рабочее состояние, при проведении контрольно-тренировочного цикла, а также периодически в процессе эксплуатации и при разрядах ниже допустимых пределов. При подготовке к заряду измеряется плотность и уровень электролита во всех аккумуляторах батареи. В аккумуляторах, где уровень недостаточен, он доводится до нормы доливкой дистиллированной воды (но не электролита!).

Заряд свинцовых аккумуляторных батарей необходимо производить от источника постоянного тока. При этом зарядное устройство, предназначенное для заряда одной 12-вольтовой батареи, должно обеспечить возможность увеличения зарядного напряжения до 16,0-16,5 В, поскольку иначе не удастся зарядить современную необслуживаемую аккумуляторную батарею полностью (до 100% ее фактической емкости). Положительный провод (клемму) зарядного устройства соединяют с положительным выводом батареи, отрицательный - с отрицательным. В практике эксплуатации пользуются, как правило, одним из двух методов заряда батареи: заряд при постоянстве тока или заряд при постоянстве напряжения. Оба эти метода равноценны с точки зрения их влияния на долговечность батареи.

Заряд при постоянстве тока производится током величиной, равной 0,1 от номинальной емкости при 20-часовом режиме разряда. Например, для батареи емкостью 60 А-ч ток заряда должен быть равен 6 А. Для поддержания постоянства тока в течение всего процесса заряда необходимо регулирующее устройство. Недостаток такого способа - необходимость постоянного контроля и регулирования зарядного тока, а также обильное газовыделение в конце заряда. Для снижения газовыделения и повышения степени заряженности батареи целесообразно ступенчатое снижение силы тока по мере увеличения зарядного напряжения. Когда напряжение достигнет 14,4 В, зарядный ток уменьшают в два раза (3 Ампера для батареи емкостью 60 А-ч) и при таком токе продолжают заряд до начала газовыделения. При заряде батарей, которые не имеют отверстий для доливки воды, целесообразно при увеличении зарядного напряжения до 15 В еще раз уменьшить ток в два раза (1,5 А для батарей емкостью 60 А-ч). Батарея считается полностью заряженной, когда ток и напряжение при заряде сохраняются без изменения в течение 1-2 часов. Для современных необслуживаемых батарей такое состояние наступает при напряжении 16,3-16,4 В в зависимости от состава сплавов решеток и чистоты электролита (при его нормальном уровне).

Температура электролита во время заряда батарей возрастает, поэтому необходимо контролировать ее величину, особенно к концу заряда. Ее величина не должна превышать 45°С. В случае если температура окажется выше, следует уменьшить наполовину зарядный ток или прервать заряд на время, необходимое для остывания электролита до 30…35°С.

Если к концу заряда плотность электролита отличается от нормы, необходимо произвести корректировку доливкой дистиллированной воды в случаях, когда плотность выше нормы, или доливкой раствора серной кислоты плотностью 1,40 г/см³, когда она ниже нормы. Доводку плотности можно производить только в конце заряда, когда плотность электролита больше не возрастает, а за счет «кипения» обеспечивается быстрое и полное перемешивание. Количество отбираемого электролита и добавляемой воды или раствора кислоты для каждого аккумулятора можно определить, пользуясь данными таблицы 3. После проведения корректировки продолжить заряд в течение 30-40 мин, после чего снова измерить плотность, и если она будет отличаться от нормы, провести ее вновь.

Таблица 3. Примерные нормы в см³ доводки плотности электролита в объеме одного литра
1,24 1,25
Отсос электролита Доливка раствора 1,40 г/см 3 Доливка воды Отсос электролита Доливка раствора 1,40 г/см 3 Доливка воды
1,24 - - - 60 62 -
1,25 44 - 45 - - -
1,26 85 - 88 39 - 40
1,27 122 - 126 78 - 80
1,28 156 - 162 117 - 120
1,29 190 - 200 158 - 162
1,30 - - - - - -
Таблица 3. Продолжение
Плотность электролита в АКБ, г/см 3 Необходимая плотность, г/см 3
1,26 1,27
Отсос электролита Доливка раствора 1,40 г/см 3 Доливка воды Отсос электролита Доливка раствора 1,40 г/см 3 Доливка воды
1,24 120 125 - 173 175 -
1,25 65 70 - 118 120 -
1,26 - - - 65 66 -
1,27 40 - 43 - - -
1,28 80 - 86 40 - 43
1,29 123 - 127 75 - 78
1,30 - - - 109 - 113
Таблица 3. Продолжение
Для пользования таблицей ее данные необходимо умножить на объем одного аккумулятора батареи, выраженный в литрах.
Плотность электролита в АКБ, г/см 3 Необходимая плотность, г/см 3
1,29 1,31
Отсос электролита Доливка раствора 1,40 г/см 3 Доливка воды Отсос электролита Доливка раствора 1,40 г/см 3 Доливка воды
1,24 252 256 - - - -
1,25 215 220 - - - -
1,26 177 180 - 290 294 -
1,27 122 126 - 246 250 -
1,28 63 65 - 198 202 -
1,29 - - - 143 146 -
1,30 36 - 38 79 81 -

Эксплуатационный уровень электролита устанавливается после окончания корректировки плотности и не ранее, чем через 30 мин после выключения батарей с заряда. При уровне электролита ниже нормы в аккумулятор нужно добавить электролит такой же плотности.

При заряде при постоянстве напряжения степень заряженности АКБ по окончании заряда напрямую зависит от величины зарядного напряжения, которое обеспечивает зарядное устройство. Так, например, за 24 часа непрерывного заряда при напряжении 14,4 В полностью разряженная 12-вольтовая батарея зарядится на 75-85%, при напряжении 15 В - на 85-90%, а при напряжении 16 В - на 95-97%. Полностью зарядить разряженную батарею в течение 20-24 часов можно при напряжении зарядного устройства 16,3-16,4 В. В первый момент включения тока его величина может достигать 40-50 А и более, в зависимости от внутреннего сопротивления (емкости) и глубины разряда батареи. Поэтому зарядное устройство снабжают схемными решениями, ограничивающими максимальный ток заряда. По мере заряда напряжение на выводах батареи постепенно приближается к напряжению зарядного устройства, а величина зарядного тока, соответственно, снижается и приближается к нулю в конце заряда. Это позволяет производить заряд без участия человека в полностью автоматическом режиме. Ошибочно критерием окончания заряда в подобных устройствах считают достижение напряжения на выводах батареи при ее заряде, равного 14,4±0,1 В. При этом, как правило, загорается зеленый сигнал, служащий индикатором достижения заданного конечного напряжения, то есть окончания заряда. Однако для удовлетворительного (на 90-95%) заряда современных необслуживаемых АКБ с помощью подобных зарядных устройств, имеющих максимальное зарядное напряжение 14,4-14,5 В, потребуется около суток.

Ускоренный комбинированный способ заряда применяется при необходимости полного заряда аккумуляторных батарей в сокращенное время. Ускоренный комбинированный заряд производится в два этапа. На первом этапе заряд батарей осуществляется при постоянном зарядном напряжении, на втором этапе – при постоянной величине зарядного тока. Переход к заряду батарей при постоянной величине зарядного тока производится при снижении его на первом этапе заряда до величины 1/10 от емкости.

Контрольно-тренировочный цикл

Контрольно-тренировочный цикл проводится для контроля технического состояния аккумуляторных батарей, проверки отдаваемой ими емкости, исправления отстающих аккумуляторов. Отстающими называются те аккумуляторы батареи, параметры которых ниже остальных.

При контрольно-тренировочном цикле проводятся:

  • предварительный полный заряд;
  • контрольный (тренировочный) разряд током 10-часового режима;
  • окончательный полный заряд.

Предварительный полный заряд при КТЦ проводится зарядным током, величиной 1/10 емкости аккумулятора. Перед началом контрольного разряда температура электролита должна быть 18…27°С. Величина разрядного тока для аккумуляторных батарей должна соответствовать значению, указанному в таблице 4.

Постоянство разрядного тока должно тщательно соблюдаться в течение всего разряда. Разряд ведется до конечного напряжения 10,2 В. При снижении напряжения до 11,1 В измерения производят через каждые 15 минут, а при снижении напряжения до 10,5 В измерения производят непрерывно до конца зарядки.

Подсчет емкости, отдаваемой аккумуляторной батареей, в процентах от номинальной производится по . Фактическая емкость, отдаваемая при контрольном разряде, может быть как меньше, так и больше номинальной. Окончательный полный заряд автомобильных батарей производится нормальным зарядным током с соблюдением всех правил с доводкой плотности электролита в конце заряда.

Автономные источники питания – аккумуляторные батареи, видятся в современных технологиях неотъемлемым элементом практически любых проектов. Для автомобильной техники аккумулятор тоже конструктивная часть, без которой немыслима полноценная эксплуатация транспорта. Всеобщая полезность аккумуляторов очевидна. Но технологически эти приборы всё-таки до конца не совершенны. Например, явное несовершенство отмечается частым зарядом аккумуляторов. Конечно же, здесь актуален вопрос, каким напряжением заряжать аккумулятор, чтобы сократить частоту подзарядки и сохранить все его рабочие свойства на длительный срок эксплуатации?

Досконально вникнуть в тонкости процессов заряда / разряда свинцово-кислотных аккумуляторных батарей (автомобильных ) помогут определения базовых параметров аккумуляторов:

  • ёмкость,
  • концентрация электролита,
  • сила тока разряда,
  • температура электролита,
  • эффект саморазряда.

Под ёмкостью батареи аккумуляторов принимается электричество, отдаваемое каждой отдельной аккумуляторной банкой в процессе её разряда. Как правило, значение ёмкости выражается ампер-часами (А/ч).


На корпусе аккумуляторной батареи для автомобиля указывается не только номинальная ёмкость, но также стартерный ток при пуске автомобиля на холодную. Пример маркировки — аккумулятор производства Тюменского завода

Ёмкость разряда аккумулятора, обозначенная на технической бирке производителем, считается номинальным параметром. Помимо этой цифры, значимым для эксплуатации является также параметр ёмкости заряда. Необходимое значение заряда вычисляется формулой:

Сз = Iз * Тз

где: Iз – зарядный ток; Тз – время заряда.

Цифра, указывающая разрядную ёмкость батареи аккумуляторов, напрямую связана с другими технологическими и конструктивными параметрами и зависима от условий эксплуатации. Из конструктивно-технологичных свойств аккумулятора влияние на ёмкость разряда оказывают:

  • активная масса,
  • применяемый электролит,
  • толщина электродов,
  • геометрические размеры электродов.

Среди технологических параметров значимой для ёмкости батареи аккумуляторов также является степень пористости активных материалов и рецептура их приготовления.


Внутренняя структура свинцово-кислого автомобильного аккумулятора, куда входят так называемые активные материалы — пластины минусового и плюсового полей, а также иные компоненты

Не остаются в стороне и эксплуатационные факторы. Как показывает практика, сила разрядного тока в паре с электролита также способны оказывать влияние на параметр ёмкости аккумулятора.

Влияние концентрации электролита

Завышенный уровень концентрации электролита способствует сокращению срока службы аккумулятора. Условия работы батареи с высокой концентрацией электролита приводят к активизации реакции, результатом которой становится образование коррозии на плюсовом электроде аккумуляторной батареи.

Поэтому важно оптимизировать значение , учитывая те условия, в которых эксплуатируется аккумулятор и требования, предъявляемые производителем по отношению к таким условиям.


Оптимизация концентрации электролита аккумуляторной батареи видится одним из важных моментов эксплуатации прибора. Контроль уровня концентрации необходим обязательно

К примеру, для условий с умеренным климатом, рекомендованный уровень концентрации электролита для большей части автомобильных аккумуляторов доводят под плотность 1,25 – 1,28 г/см 2 .

А когда актуальна эксплуатация приборов применительно к жаркому климату, концентрация электролита должна соответствовать плотности 1,22 – 1,24 г/см 2 .

Аккумуляторы — сила тока разряда

Процесс разряда АКБ логично разделить условно на два режима:

  1. Длительный.
  2. Короткий.

Для первого события характерным видится разряд при малых токах на протяжении относительно длительного временного периода (от 5 до 24 часов).

Для второго события (короткий разряд, стартерный разряд), напротив, характерными являются большие токи в коротком промежутке времени (секунды, минуты).

Увеличение разрядного тока провоцирует снижение ёмкости батареи аккумуляторов.


Зарядное устройство Телетрон, которое успешно применяется для работы с кислотно-свинцовыми автомобильными батареями. Несложная электронная схема, но высокая эффективность действия

Пример:

Есть АКБ с ёмкостью 55 А/ч с рабочим током на клеммах 2,75А. При нормальных условиях окружающей среды (плюс 25-26ºС) ёмкость АКБ находится в пределах 55-60 А/ч.

Если разрядить батарею кратковременным током величиной 255 А, что эквивалентно увеличению номинальной ёмкости в 4,6 раза, номинальная ёмкость снизится до 22 А/ч. То есть, практически вдвое.

Температура электролита и саморазряд аккумулятора

Разрядная ёмкость аккумуляторных батарей естественным образом снижается, если падает температура электролита. Падение температуры электролита влечёт за собой увеличение степени вязкости жидкой составляющей. Как следствие, увеличивается электрическое сопротивление активного вещества.

Отключенная от потребителя, полностью бездействующая , имеет свойства терять ёмкость. Объясняется такое явление химическими реакциями внутри прибора, проходящими даже в условиях полного отключения от нагрузки.

Под влияние окислительно-восстановительных реакций попадают оба электрода – минусовой и плюсовой. Но в большей степени процессом саморазряда охвачен электрод отрицательной полярности.

Реакция сопровождается образованием водорода в газообразном виде. При увеличении концентрации в растворе электролита серной кислоты, отмечается увеличение плотности электролита от значения 1,27 г/см 3 до 1,32 г/см 3 .

Это соразмерно с 40%-ым увеличением скорости эффекта саморазряда на минусовом электроде. Прирост скорости саморазряда дают также и примеси металлов, входящие в структуру электрода отрицательной полярности.


Саморазряд автомобильного аккумулятора после продолжительного хранения. При полном бездействии, при отсутствии нагрузки батарея утратила значительную часть ёмкости

Нужно отметить: любые металлы, присутствующие в составе электролита и других компонентов аккумуляторов, способствуют усилению эффекта саморазряда.

Соприкасаясь с поверхностью отрицательного электрода, эти металлы вызывают реакцию, в результате которой начинается выделение водорода.

Некоторая часть существующих примесей исполняет роль переносчика зарядов от плюсового электрода к минусовому. При этом имеют место реакции восстановления и окисления ионов металлов (то есть опять же процесс саморазряда).


Бывают и такие случаи, когда АКБ утрачивает заряд от загрязнений на корпусе. За счёт загрязнений создаётся проводящий слой, замыкающий плюсовой и минусовой электроды

Помимо внутреннего саморазряда, не исключается внешний саморазряд аккумулятора автомобиля. Причиной такого явления может стать высокая степень загрязнённости поверхности корпуса АКБ.

Например, пролитый на корпус электролит, вода или иные технические жидкости. Но в этом случае эффект саморазряда легко устраняется. Достаточно лишь очистить корпус батареи и содержать его всегда в чистоте.

Заряд автомобильных аккумуляторов

Начнём от ситуации бездействия прибора (в отключенном состоянии). Каким напряжением или током заряжать аккумулятор автомобиля, когда прибор находится на хранении?

В условиях хранения АКБ основная цель зарядки направлена на компенсацию саморазряда. В этом случае зарядка обычно выполняется малыми токами.

Диапазон значений заряда, как правило, от 25 до 100 мА. При этом напряжение заряда необходимо поддерживать в границах 2,18 – 2,25 вольт по отношению к единичной аккумуляторной банке.

Выбор условий заряда аккумулятора

Зарядный ток аккумулятора обычно настраивается на определённую величину в зависимости от заданного времени подзаряда.


Подготовка автомобильной батареи аккумуляторов для подзарядки в режиме, который требуется определить с учётом технологических свойств и технических параметров при эксплуатации АКБ

Так, если предполагается заряжать аккумулятор в течение 20 часов, оптимальным параметром тока заряда считается величина, равная 0,05С (то есть 5% от номинальной ёмкости аккумулятора).

Соответственно, значения будут пропорционально увеличиваться, если менять один из параметров. К примеру, при 10-и часовой зарядке, сила тока уже составит 0,1С.

Заряд двухступенчатым циклом

При таком режиме изначально (первая ступень) осуществляется заряд током 1,5С до состояния, когда напряжение на отдельной банке достигнет значения 2,4 вольта.

После этого переводят зарядное устройство на режим по току заряда величиной 0,1С и продолжают заряжать до полного набора ёмкости 2 – 2,5 часа (вторая ступень).

Напряжение заряда в режиме второй ступени варьируется в пределах 2,5 – 2,7 вольта для одной банки.

Форсированный режим заряда

Принцип форсированного заряда предполагает установку значения зарядного тока на уровне 95% от номинальной ёмкости батареи – 0,95С.

Способ достаточно агрессивный, но позволяет всего за 2,5-3 часа зарядить аккумулятор практически полностью (на практике 90%). До 100% ёмкости зарядка форсированным режимом отнимет 4 – 5 часов времени.

Контрольно-тренировочный цикл


Практика эксплуатации автомобильных АКБ отмечает положительный результат, когда контрольно-тренировочный цикл применяется к новым аккумуляторным батареям, ещё не побывавшим в работе

Для этого варианта оптимальным является зарядка с параметрами, вычисленными простой формулой:

I = 0.1 * С20;

Заряжают до момента, когда напряжение на отдельно взятой банке составит 2,4 вольта, после чего уменьшают величину зарядного тока до значения:

I = 0.05 * C20;

При таких параметрах продолжают процесс до полного заряда.

Контрольно-тренировочный цикл охватывает также практику разряда, когда АКБ разряжается небольшим током 0,1С до уровня общего напряжения 10,4 вольта.

При этом степень плотности электролита поддерживается на уровне 1,24 г/см 3 . После разряда прибор заряжают по стандартной методике.

Общие принципы зарядки свинцово-кислотных АКБ

На практике применяют несколько способов, каждый из которых имеет свои сложности и сопровождается разным объёмом финансовых издержек.


Определиться, каким способом заряжать аккумуляторную батарею, несложно. Другой вопрос — какой результат будет получен от применения того или иного способа

Самым доступным и простым методом считается заряд постоянным током при напряжении 2,4 – 2,45 вольт/банка.

Процесс заряда продолжается до тех пор, когда величина тока будет оставаться постоянной в течение 2,5-3 часов. При таких условиях аккумулятор считается полностью заряженным.

Между тем большее признание среди автомобилистов получила методика комбинированного заряда. В этом варианте действует принцип ограничения начального тока (0,1С) до момента достижения заданного напряжения.

Затем процесс продолжается при постоянном напряжении (2,4В). Для этой схемы допустимо повышение первоначального тока заряда до 0,3С, но не более того.

Аккумуляторы, работающие в буферном режиме, рекомендуется заряжать при низких напряжениях. Оптимальные значения заряда: 2,23 – 2,27 вольта.

Глубокий разряд — устранение последствий

Прежде всего, следует подчеркнуть: восстановление АКБ до номинальной ёмкости возможно, но при условии, когда имели место не более 2-3 глубоких разрядов.

Заряд в таких случаях выполняется постоянным напряжением величиной равной 2,45 вольта на банку. Также допускается заряжать током (постоянным) величиной 0,05С.


Процесс восстановления АКБ может потребовать двух-трёх отдельных циклов заряда. Чаще всего для достижения полной ёмкости зарядку проводят именно в 2-3 цикла

Если заряд проводится напряжением 2,25 – 2,27 вольта, рекомендуется выполнить процесс дважды или трижды. Так как при малых напряжениях достичь номинала ёмкости в большинстве случаев не удаётся.

Конечно же, следует учитывать влияние окружающей температуры в процессе выполнения восстановления. Если температура окружающей среды находится в границах 5 – 35ºС, напряжения заряда изменять не требуется. В иных условиях потребуется корректировка заряда.

Видео по контрольно-тренировочному циклу АКБ

Метки:



Loading...Loading...