Магнитное поле. Магнитное поле постояннoго электрического тока Магнитное поле витка с током

Все формулы взяты в строгом соответствии с Федеральным институтом педагогических измерений (ФИПИ)

3.3 МАГНИТНОЕ ПОЛЕ

3.3.1 Механическое взаимодействие магнитов

Около электрического заряда образуется своеобразная форма материи — электрическое поле. Вокруг магнита существует подобная форма материи, но имеет другую природу происхождения (ведь руда электрически нейтральна), ее называют магнитным полем. Для изучения магнитного поля используют прямой или подковообразный магниты. Определенные места магнита обладают наибольшим притягивающим действием, их называют полюсами (северный и южный). Разноименные магнитные полюса притягиваются, а одноименные — отталкиваются.

Магнитное поле. Вектор магнитной индукции

Для силовой характеристики магнитного поля используют вектор индукции магнитного поля B. Магнитное поле графически изображают при помощи силовых линий (линии магнитной индукции). Линии являются замкнутыми, не имеют ни начала, ни конца. Место, из которого выходят магнитные линии — северный полюс (North), входят магнитные линии в южный полюс (South).

Магнитная индукция B [Тл] - векторная физическая величина, являющаяся силовой характеристикой магнитного поля.

Принцип суперпозиции магнитных полей — если магнитное поле в данной точке пространства создается несколькими источниками поля, то магнитная индукция — векторная сумма индукций каждого из полей в отдельности:

Линии магнитного поля. Картина линий поля полосового и подковообразного постоянных магнитов

3.3.2 Опыт Эрстеда. Магнитное поле проводника с током. Картина линий поля длинного прямого проводника и замкнутого кольцевого проводника, катушки с током

Магнитное поле существует не только вокруг магнита, но и любого проводника с током. Опыт Эрстеда демонстрирует действие электрического тока на магнит. Если прямой проводник, по которому идёт ток, пропустить через отверстие в листе картона, на котором рассыпаны мелкие железные или стальные опилки, то они образуют концентрические окружности, центр которых располагается на оси проводника. Эти окружности представляют собой силовые линии магнитного поля проводника с током.

3.3.3 Сила Ампера, её направление и величина:

Сила Ампера — сила, действующая на проводник с током в магнитном поле. Направление силы Ампера определяется по правилу левой руки: если левую руку расположить так, чтобы перпендикулярная составляющая вектора магнитной индукции В входила в ладонь, а четыре вытянутых пальца были направлены по направлению тока, то отогнутый на 90 градусов большой палец покажет направление силы, действующей на отрезок проводника с током, то есть силы Ампера.

где I — сила тока в проводнике;

B

L — длина проводника, находящегося в магнитном поле;

α — угол между вектором магнитного поля и направлением тока в проводнике.

3.3.4 Сила Лоренца, её направление и величина:

Так как электрический ток представляет собой упорядоченное движение зарядов, то действие магнитного поля на проводник с током есть результат его действия на отдельные движущиеся заряды. Силу, действующую со стороны магнитного поля на движущиеся в нем заряды, называют силой Лоренца. Сила Лоренца определяется соотношением:

где q — величина движущегося заряда;

V — модуль его скорости;

B — модуль вектора индукции магнитного поля;

α — угол между вектором скорости заряда и вектором магнитной индукции.

Обратите внимание, что сила Лоренца перпендикулярна скорости и поэтому она не совершает работы, не изменяет модуль скорости заряда и его кинетической энергии. Но направление скорости изменяется непрерывно.

Сила Лоренца перпендикулярна векторам В и v , и её направление определяется с помощью того же правила левой руки, что и направление силы Ампера: если левую руку расположить так, чтобы составляющая магнитной индукции В , перпендикулярная скорости заряда, входила в ладонь, а четыре пальца были направлены по движению положительного заряда (против движения отрицательного, например электрона), то отогнутый на 90 градусов большой палец покажет направление действующей на заряд силы Лоренца .

Движение заряженной частицы в однородном магнитном поле

При движении заряженной частицы в магнитном поле сила Лоренца работы не совершает. Поэтому модуль вектора скорости при движении частицы не изменяется. Если заряженная частица движется в однородном магнитном поле под действием силы Лоренца, а ее скорость лежит в плоскости, перпендикулярной вектору то частица будет двигаться по окружности радиуса R.

Давайте вместе разбираться в том, что такое магнитное поле. Ведь многие люди живут в этом поле всю жизнь и даже не задумываются о нем. Пора это исправить!

Магнитное поле

Магнитное поле – особый вид материи. Оно проявляется в действии на движущиеся электрические заряды и тела, которые обладают собственным магнитным моментом (постоянные магниты).

Важно: на неподвижные заряды магнитное поле не действует! Создается магнитное поле также движущимися электрическими зарядами, либо изменяющимся во времени электрическим полем, либо магнитными моментами электронов в атомах. То есть любой провод, по которому течет ток, становится также и магнитом!


Тело, обладающее собственным магнитным полем.

У магнита есть полюса, называемые северным и южным. Обозначения "северный" и "южный" даны лишь для удобства (как "плюс" и "минус" в электричестве).

Магнитное поле изображается посредством силовых магнитных линий . Силовые линии непрерывны и замкнуты, а их направление всегда совпадает с направлением действия сил поля. Если вокруг постоянного магнита рассыпать металлическую стружку, частицы металла покажут наглядную картину силовых линий магнитного поля, выходящих из северного и входящих в южный полюс. Графическая характеристика магнитного поля - силовые линии.


Характеристики магнитного поля

Основными характеристиками магнитного поля являются магнитная индукция , магнитный поток и магнитная проницаемость . Но давайте обо всем по порядку.

Сразу отметим, что все единицы измерения приводятся в системе СИ .

Магнитная индукция B – векторная физическая величина, являющаяся основной силовой характеристикой магнитного поля. Обозначается буквой B . Единица измерения магнитной индукции – Тесла (Тл ).

Магнитная индукция показывает, насколько сильно поле, определяя силу, с которой оно действует на заряд. Данная сила называется силой Лоренца .

Здесь q - заряд, v - его скорость в магнитном поле, B - индукция, F - сила Лоренца, с которой поле действует на заряд.

Ф – физическая величина, равная произведению магнитной индукции на площадь контура и косинус между вектором индукции и нормалью к плоскости контура, через который проходит поток. Магнитный поток - скалярная характеристика магнитного поля.

Можно сказать, что магнитный поток характеризует количество линий магнитной индукции, пронизывающих единицу площади. Магнитный поток измеряется в Веберах (Вб) .


Магнитная проницаемость – коэффициент, определяющий магнитные свойства среды. Одним из параметров, от которых зависит магнитная индукция поля, является магнитная проницаемость.

Наша планета на протяжении нескольких миллиардов лет является огромным магнитом. Индукция магнитного поля Земли изменяется в зависимости от координат. На экваторе она равна примерно 3,1 на 10 в минус пятой степени Тесла. К тому же существуют магнитные аномалии, где значение и направление поля существенно отличаются от соседних областей. Одни из самых крупных магнитных аномалий на планете - Курская и Бразильская магнитные аномалии .

Происхождение магнитного поля Земли до сих пор остается загадкой для ученых. Предполагается, что источником поля является жидкое металлическое ядро Земли. Ядро движется, значит, движется расплавленный железо-никелевый сплав, а движение заряженных частиц – это и есть электрический ток, порождающий магнитное поле. Проблема в том, что эта теория (геодинамо ) не объясняет того, как поле сохраняется устойчивым.


Земля – огромный магнитный диполь. Магнитные полюса не совпадают с географическими, хотя и находятся в непосредственной близости. Более того, магнитные полюса Земли движутся. Их смещение регистрируется с 1885 года. Например, за последние сто лет магнитный полюс в Южном полушарии сместился почти на 900 километров и сейчас находится в Южном океане. Полюс арктического полушария движется через Северный Ледовитый океан к Восточно-Сибирской магнитной аномалии, скорость его передвижения (по данным 2004 года) составила около 60 километров в год. Сейчас наблюдается ускорение движения полюсов - в среднем скорость растет на 3 километра в год.

Каково значение магнитного поля Земли для нас? В первую очередь магнитное поле Земли защищает планету от космических лучей и солнечного ветра. Заряженные частицы из далекого космоса не падают прямо на землю, а отклоняются гигантским магнитом и движутся вдоль его силовых линий. Таким образом, все живое оказывается защищенным от пагубной радиации.


За историю Земли происходило несколько инверсий (смен) магнитных полюсов. Инверсия полюсов – это когда они меняются местами. Последний раз это явление произошло около 800 тысяч лет назад, а всего геомагнитных инверсий в истории Земли было более 400. Некоторые ученые полагают, что с учетом наблюдающегося ускорения движения магнитных полюсов следующей инверсии полюсов следует ожидать в ближайшие пару тысяч лет.

К счастью, в нашем веке смены полюсов пока не ожидается. А значит, можно думать о приятном и наслаждаться жизнью в старом добром постоянном поле Земли, рассмотрев основные свойства и характеристики магнитного поля. А чтобы Вы могли это делать, существуют наши авторы, которым можно с уверенностью в успехе поручить часть учебных хлопот! и другие типы работ вы можете заказать по ссылке.

«Определение магнитного поля» - По данным, полученным в ходе экспериментов, заполним таблицу. Ж. Верн. Когда мы подносим к магнитной стрелке магнит, она поворачивается. Графическое изображение магнитных полей. Ханс Кристиан Эрстед. Электрическое поле. Магнит имеет два полюса: северный и южный. Этап обобщения и систематизации знаний.

«Магнитное поле и его графическое изображение» - Неоднородное магнитное поле. Катушки с током. Магнитные линии. Гипотеза Ампера. Внутри полосового магнита. Разноименные магнитные полюса. Полярное сияние. Магнитное поле постоянного магнита. Магнитное поле. Земное магнитное поле. Магнитные полюсы. Биометрология. Концентрические окружности. Однородное магнитное поле.

«Энергия магнитного поля» - Скалярная величина. Расчёт индуктивности. Постоянные магнитные поля. Время релаксации. Определение индуктивности. Энергия катушки. Экстратоки в цепи с индуктивностью. Переходные процессы. Плотность энергии. Электродинамика. Колебательный контур. Импульсное магнитное поле. Самоиндукция. Плотность энергии магнитного поля.

«Характеристики магнитного поля» - Линии магнитной индукции. Правило Буравчика. Поворачиваются вдоль силовых линий. Компьютерная модель магнитного поля Земли. Магнитная постоянная. Магнитная индукция. Число носителей заряда. Три способа задать вектор магнитной индукции. Магнитное поле электрического тока. Ученый-физик Уильям Гильберт.

«Свойства магнитного поля» - Вид вещества. Магнитная индукция магнитного поля. Магнитная индукция. Постоянный магнит. Некоторые значения магнитной индукции. Магнитная стрелка. Громкоговоритель. Модуль вектора магнитной индукции. Линии магнитной индукции всегда замкнуты. Взаимодействие токов. Вращающий момент. Магнитные свойства вещества.

«Движение частиц в магнитном поле» - Спектрограф. Проявление действия силы Лоренца. Сила Лоренца. Циклотрон. Определение величины силы Лоренца. Контрольные вопросы. Направления силы Лоренца. Межзвёздное вещество. Задача эксперимента. Изменение параметров. Магнитное поле. Масс-спектрограф. Движение частиц в магнитном поле. Электронно-лучевая трубка.

Всего в теме 20 презентаций

Каталог заданий.
Задания Д13. Магнитное поле. Электромагнитная индукция

Сортировка Основная Сначала простые Сначала сложные По популярности Сначала новые Сначала старые
Пройти тестирование по этим заданиям
Вернуться к каталогу заданий
Версия для печати и копирования в MS Word

По лёгкой проводящей рамке, расположенной между полюсами подковообразного магнита, пропустили электрический ток, направление которого указано на рисунке стрелками.

Решение.

Магнитное поле будет направлено от северного полюса магнита к южному (перпендикулярно стороне АБ рамки). На стороны рамки с током действует сила Ампера, направление которой определяется по правилу левой руки, а величина равна где - сила тока в рамке, - величина магнитной индукции поля магнита, - длина соответствующей стороны рамки, - синус угла между вектором магнитной индукции и направлением тока. Таким образом, на АБ сторону рамки и сторону параллельную ей будут действовать силы, равные по величине, но противоположные по направлению: на левую сторону «от нас», а на правую «на нас». На остальные стороны силы действовать не будут, поскольку ток в них течет параллельно силовым линиям поля. Таким образом рамка начнёт вращаться по часовой стрелке, если смотреть сверху.

По мере поворота направление силы будет меняться и в тот момент, когда рамка повернётся на 90° вращающий момент сменит направление, таким образом, рамка не будет проворачиваться дальше. Некоторое время рамка будет колебаться в таком положении, а затем окажется в положении, указанном на рисунке 4.

Ответ: 4

Источник: ГИА по физике. Основная волна. Вариант 1313.

По катушке идёт электрический ток, направление которого показано на рисунке. При этом на концах железного сердечника катушки

1) образуются магнитные полюса: на конце 1 - северный полюс; на конце 2 - южный

2) образуются магнитные полюса: на конце 1 - южный полюс; на конце 2 - северный

3) скапливаются электрические заряды: на конце 1 - отрицательный заряд; на конце 2 - положительный

4) скапливаются электрические заряды: на конце 1 - положительный заряд; на конце 2 - отрицательны

Решение.

При движении заряженных частиц всегда возникает магнитное поле. Воспользуемся правилом правой руки для определения направления вектора магнитной индукции: направим пальцы по линии тока, тогда отогнутый большой палец укажет направление вектора магнитной индукции. Таким образом, линии магнитной индукции направлены из конца 1 к концу 2. Линии магнитного поля входят в южный магнитный полюс и выходят из северного.

Правильный ответ указан под номером 2.

Примечание.

Внутри магнита (катушки) линии магнитного поля идут от южного полюса к северному.

Ответ: 2

Источник: ГИА по физике. Основная волна. Вариант 1326., ОГЭ-2019. Основная волна. Вариант 54416

На рисунке представлена картина линий магнитного поля от двух полосовых магнитов, полученная с помощью железных опилок. Каким полюсам полосовых магнитов, судя по расположению магнитной стрелки, соответствуют области 1 и 2?

1) 1 - северному полюсу; 2 - южному

2) 1 - южному; 2 - северному полюсу

3) и 1, и 2 - северному полюсу

4) и 1, и 2 - южному полюсу

Решение.

Поскольку магнитные линии замкнуты, полюса не могут быть одновременно южными или северными. Буква N (North) обозначает северный полюс, S (South) - южный. Северный полюс притягивается к южному. Следовательно, область 1 - южный полюс, область 2 - северный полюс.

Подобно тому, как покоящийся электрический заряд действует на другой заряд посредством электрического поля, электрический ток действует на другой ток посредством магнитного поля . Действие магнитного поля на постоянные магниты сводится к действию его на заряды, движущиеся в атомах вещества и создающие микроскопические круговые токи.

Учение об электромагнетизме основано на двух положениях:

  • магнитное поле действует на движущиеся заряды и токи;
  • магнитное поле возникает вокруг токов и движущихся зарядов.

Взаимодействие магнитов

Постоянный магнит (или магнитная стрелка) ориентируется вдоль магнитного меридиана Земли. Тот его конец, который указывает на север, называется северным полюсом (N), а противоположный конец - южным полюсом (S). Приближая два магнита друг к другу, заметим, что одноименные их полюсы отталкиваются, а разноименные - притягиваются (рис. 1 ).

Если разделить полюса, разрезав постоянный магнит на две части, то мы обнаружим, что каждая из них тоже будет иметь два полюса , т. е. будет постоянным магнитом (рис. 2 ). Оба полюса - северный и южный, - неотделимые друг от друга, равноправны.

Магнитное поле, создаваемое Землей или постоянными магнитами, изображается, подобно электрическому полю, магнитными силовыми линиями. Картину силовых линий магнитного поля какого-либо магнита можно получить, помещая над ним лист бумаги, на котором насыпаны равномерным слоем железные опилки. Попадая в магнитное поле, опилки намагничиваются - у каждой из них появляется северный и южный полюсы. Противоположные полюсы стремятся сблизиться друг с другом, но этому мешает трение опилок о бумагу. Если постучать по бумаге пальцем, трение уменьшится и опилки притянутся друг к другу, образуя цепочки, изображающие линии магнитного поля.

На рис. 3 показано расположение в поле прямого магнита опилок и маленьких магнитных стрелок, указывающих направление линий магнитного поля. За это направление принято направление северного полюса магнитной стрелки.

Опыт Эрстэда. Магнитное поле тока

В начале XIX в. датский ученый Эрстэд сделал важное открытие, обнаружив действие электрического тока на постоянные магниты . Он поместил длинный провод вблизи магнитной стрелки. При пропускании по проводу тока стрелка поворачивалась, стремясь расположиться перпендикулярно ему (рис. 4 ). Это можно было объяснить возникновением вокруг проводника магнитного поля.

Магнитные силовые линии поля, созданного прямым проводником с током, представляют собой концентрические окружности, расположенные в перпендикулярной к нему плоскости, с центрами в точке, через которую проходит ток (рис. 5 ). Направление линий определяется правилом правого винта:

Если винт вращать по направлению линий поля, он будет двигаться в направлении тока в проводнике .

Силовой характеристикой магнитного поля является вектор магнитной индукции B . В каждой точке он направлен по касательной к линии поля. Линии электрического поля начинаются на положительных зарядах и оканчиваются на отрицательных, а сила, действующая в этом поле на заряд, направлена по касательной к линии в каждой ее точке. В отличие от электрического, линии магнитного поля замкнуты, что связано с отсутствием в природе «магнитных зарядов».

Магнитное поле тока принципиально ничем не отличается от поля, созданного постоянным магнитом. В этом смысле аналогом плоского магнита является длинный соленоид - катушка из провода, длина которой значительно больше ее диаметра. Схема линий созданного им магнитного поля, изображенная на рис. 6 , аналогична таковой для плоского магнита (рис. 3 ). Кружочками обозначены сечения провода, образующего обмотку соленоида. Токи, текущие по проводу от наблюдателя, обозначены крестиками, а токи противоположного направления - к наблюдателю - обозначены точками. Такие же обозначения приняты и для линий магнитного поля, когда они перпендикулярны плоскости чертежа (рис. 7 а, б).

Направление тока в обмотке соленоида и направление линий магнитного поля внутри него также связаны правилом правого винта, которое в этом случае формулируется так:

Если смотреть вдоль оси соленоида, то текущий по направлению часовой стрелки ток создает в нем магнитное поле, направление которого совпадает с направлением движения правого винта (рис. 8 )

Исходя из этого правила, легко сообразить, что у соленоида, изображенного на рис. 6 , северным полюсом служит правый его конец, а южным - левый.

Магнитное поле внутри соленоида является однородным - вектор магнитной индукции имеет там постоянное значение (B = const). В этом отношении соленоид подобен плоскому конденсатору, внутри которого создается однородное электрическое поле.

Сила, действующая в магнитном поле на проводник с током

Опытным путем было установлено, что на проводник с током в магнитном поле действует сила. В однородном поле прямолинейный проводник длиной l, по которому течет ток I, расположенный перпендикулярно вектору поля B, испытывает действие силы: F = I l B .

Направление силы определяется правилом левой руки :

Если четыре вытянутых пальца левой руки расположить по направлению тока в проводнике, а ладонь - перпендикулярно вектору B, то отставленный большой палец укажет направление силы, действующей на проводник (рис. 9 ).

Следует отметить, что сила, действующая на проводник с током в магнитном поле, направлена не по касательной к его силовым линиям, подобно электрической силе, а перпендикулярна им. На проводник, расположенный вдоль силовых линий, магнитная сила не действует.

Уравнение F = IlB позволяет дать количественную характеристику индукции магнитного поля.

Отношение не зависит от свойств проводника и характеризует само магнитное поле.

Модуль вектора магнитной индукции B численно равен силе, действующей на расположенный перпендикулярно к нему проводник единичной длины, по которому течет ток силой один ампер.

В системе СИ единицей индукции магнитного поля служит тесла (Тл):

Магнитное поле. Таблицы, схемы, формулы

(Взаимодействие магнитов, опыт Эрстеда, вектор магнитной индукции, направление вектора, принцип суперпозиции. Графическое изображение магнитных полей, линии магнитной индукции. Магнитный поток, энергетическая характеристика поля. Магнитные силы, сила Ампера, сила Лоренца. Движение заряженных частиц в магнитном поле. Магнитные свойства вещества, гипотеза Ампера)



Loading...Loading...