Периферическая нервная система, ее строение и функции. Строение периферической и центральной нервной системы Дегенерация и регенерация нервных волокон при повреждении

16-09-2012, 21:50

Описание

В периферической нервной системе различают следующие компоненты:
  1. Ганглии.
  2. Нервы.
  3. Нервные окончания и специализированные органы чувств.

Ганглии

Ганглии представляют собой скопление нейронов, формирующих в анатомическом смысле небольшие узелки различного размера, разбросанные в различных участках тела. Различают два типа ганглиев - цереброспинальные и вегетативные. Тела нейронов спинномозговых ганглиев, как правило, округлой формы и различного размера (от 15 до 150 мкм). Ядро располагается в центре клетки и содержит четкое круглое ядрышко (рис. 1.5.1).

Рис. 1.5.1. Микроскопическое строение интрамурального ганглия (а) и цитологические особенности ганглиозных клеток (б): а - группы ганглиозных клеток, окруженные волокнистой соединительной тканью. Снаружи ганглий покрыт капсулой, к которой прилежит жировая клетчатка; б-нейроны ганглия (1- влючение в цитоплазме ганглиозной клетки; 2 - гипертрофированое ядрышко; 3 - клетки-сателлиты)

Каждое тело нейрона отделено от окружающей соединительной ткани прослойкой уплощенных капсулярных клеток (амфицитов). Их можно отнести к клеткам глиальной системы. Проксимальный отросток каждой ганглиозной клетки в заднем корешке разделяется на две ветви. Одна из них вливается в спинномозговой нерв, в котором проходит к рецепторному окончанию. Вторая входит в задний корешок и достигает заднего столба серого вещества на той же стороне спинного мозга.

Ганглии вегетативной нервной системы по строению сходны с цереброспинальными ганглиями. Наиболее существенное отличие сводится к тому, что нейроны вегетативных ганглиев мультиполярны. В области глазницы обнаруживаются различные вегетативные ганглии, обеспечивающие иннервацию глазного яблока.

Периферические нервы

Периферические нервы являются четко определяемыми анатомическими образованиями и довольно прочны. Нервный ствол окутывается снаружи соединительнотканным футляром на всем протяжении. Этот наружный футляр называют эпинервием. Группы из нескольких пучков нервных волокон окружаются периневрием. От периневрия отделяются тяжи рыхлой волокнистой соединительной ткани, окружающие отдельные пучки нервных волокон. Это эндоневрий (рис. 1.5.2).

Рис. 1.5.2. Особенности микроскопического строения периферического нерва (продольный срез): 1- аксоны нейронов: 2- ядра шванновских клеток (леммоциты); 3-перехват Ранвье

Периферические нервы обильно снабжены кровеносными сосудами.

Периферический нерв состоит из различного количества плотно упакованных нервных волокон, являющихся цитоплазматическими отростками нейронов. Каждое периферическое нервное волокно покрыто тонким слоем цитоплазмы - неврилеммой, или шванновской оболочкой . Шванновские клетки (леммоциты), участвующие в формировании этой оболочки, происходят из клеток нервного гребня.

В некоторых нервах между нервным волокном и шванновской клеткой располагается слой миелина . Первые называются миелинизированными, а вторые - немиелинизированными нервными волокнами.

Миелин (рис. 1.5.3)

Рис. 1.5.3. Периферический нерв. Перехваты Ранвье: а - светооптическая микроскопия. Стрелкой указан перехват Ранвье; б-ультраструктурные особенности (1-аксоплазма аксона; 2- аксолемма; 3 - базальная мембрана; 4 - цитоплазма леммоцита (шванновская клетка); 5 - цитоплазматическая мембрана леммоцита; 6 - митохондрия; 7 - миелиновая оболочка; 8 - нейрофилламенты; 9 - нейротрубочки; 10 - узелковая зона перехвата; 11 - плазмолемма леммоцита; 12 - пространство между соседними леммоцитами)

покрывает нервное волокно не сплошь, а через определенное расстояние прерывается. Участки прерывания миелина обозначаются перехватами Ранвье. Расстояние между последовательными перехватами Ранвье варьирует от 0,3 до 1,5 мм. Перехваты Ранвье имеются и в волокнах центральной нервной системы, где миелин образует олигодендроциты (см. выше). Нервные волокна разветвляются именно в перехватах Ранвье.

Каким образом формируется миелиновая оболочка периферических нервов ? Первоначально шванновская клетка обхватывает аксон, так что он располагается в желобке. Затем эта клетка как бы наматывается на аксон. При этом участки цитоплазматической мембраны по краям желобка вступают в контакт друг с другом. Обе части цитоплазматической мембраны остаются соединенными, и тогда видно, что клетка продолжает обматывать аксон по спирали. Каждый виток на поперечном разрезе имеет вид кольца, состоящего из двух линий цитоплазматической мембраны. По мере наматывания цитоплазма шванновской клетки выдавливается в тело клетки.

Некоторые афферентные и вегетативные нервные волокна не имеют миелиновой оболочки. Тем не менее они защищены шванновскими клетками. Это происходит благодаря вдавливанию аксонов в тело шванновских клеток.

Механизм передачи нервного импульса в немиелинизированном волокне освещен в руководствах по физиологии. Здесь мы лишь кратко охарактеризуем основные закономерности процесса.

Известно, что цитоплазматическая мембрана нейрона поляризованна , т. е. между внутренней и наружной поверхностью мембраны существует электростатический потенциал, равный - 70 мВ. Причем внутренняя поверхность обладает отрицательным, а наружная положительным зарядом. Подобное состояние обеспечивается действием натрий-калиевого насоса и особенностями белкового состава внутрицитоплазматического содержимого (преобладание отрицательно заряженных белков). Поляризованное состояние называют потенциалом покоя.

При стимуляции клетки, т. е. нанесении раздражения цитоплазматической мембраны самыми разнообразными физическими, химическими и др. факторами, первоначально наступает деполяризация, а затем реполяризация мембраны . В физико-химическом смысле при этом наступает обратимое изменение в цитоплазме концентрации ионов К и Na. Процесс реполяризации активный с использованием энергетических запасов АТФ.

Волна деполяризации - реполяризации распространяется вдоль цитоплазматической мембраны (потенциал действия). Таким образом, передача нервного импульса есть не что иное, как распространяющаяся волна потенциала действи я.

Каково же значение в передаче нервного импульса миелиновой оболочки? Выше указано, что миелин прерывается в перехватах Ранвье. Поскольку только в перехватах Ранвье цитоплазматическая мембрана нервного волокна контактирует с тканевой жидкостью, только в этих местах возможна деполяризация мембраны таким же образом, как в немиелинизированных волокнах. На остальном протяжении этот процесс невозможен в связи с изолирующими свойствами миелина. В результате этого между перехватами Ранвье (от одного участка возможной деполяризации до другого) передача нервного импульса осуществляется внутрицитоплазматическими местными токами . Поскольку электрический ток проходит гораздо быстрее, чем непрерывная волна деполяризации, передача нервного импульса в миелинизированном нервном волокне происходит значительно быстрее (в 50 раз), причем скорость увеличивается с увеличением диаметра нервного волокна, что обусловлено снижением внутреннего сопротивления. Подобный тип передачи нервного импульса называется сальтаторным. т. е. прыгающим. Исходя из изложенного, видно важное биологическое значение миелиновых оболочек.

Нервные окончания

Афферентные (чувствительные) нервные окончания (рис. 1.5.5, 1.5.6).

Рис. 1.5.5. Особенности строения различных рецепторных окончаний: а - свободные нервные окончания; б- тельце Мейснера; в - колба Краузе; г - тельце Фатер-Пачини; д - тельце Руффини

Рис. 1.5.6. Строение нервно-мышечного веретена: а-моторная иннервация интрафузальных и экстрафузальных мышечных волокон; б спиральные афферентные нервные окончания вокруг интрафузальных мышечных волокон в области ядерных сумок (1 - нервно-мышечные эффекторные окончания экстрафузальных мышечных волокон; 2 - моторные бляшки интрафузальных мышечных волокон; 3 - соединительнотканная капсула; 4 - ядерная сумка; 5 - чувствительные кольцеспиральные нервные окончания вокруг ядерных сумок; 6 - скелетные мышечные волокна; 7 - нерв)

Афферентные нервные окончания представляют собой концевые аппараты дендритов чувствительных нейронов, повсеместно располагающихся во всех органах человека и дающие информацию центральной нервной системе об их состоянии. Воспринимают они раздражения, исходящие и из внешней среды, преобразуя их в нервный импульс. Механизм возникновения нервного импульса характеризуется уже описанными явлениями поляризации и деполяризации цитоплазматической мембраны отростка нервной клетки.

Существует ряд классификаций афферентных окончаний - в зависимости от специфичности раздражения (хеморецепторы, барорецепторы, механорецепторы, терморецепторы и др.), от особенностей строения (свободные нервные окончания и несвободные).

Обонятельные, вкусовые, зрительные и слуховые рецепторы, а также рецепторы, воспринимающие движение частей тела относительно направления силы тяжести, называют специальными органами чувств . В последующих главах этой книги мы подробно остановимся только на зрительных рецепторах.

Рецепторы разнообразны по форме, строению и функциям . В данном разделе нашей задачей не является подробное описание различных рецепторов. Упомянем лишь о некоторых из них в разрезе описания основных принципов строения. При этом необходимо указать на различия свободных и несвободных нервных окончаний. Первые характеризуются тем, что они состоят только из ветвления осевых цилиндров нервного волокна и клетки глии. При этом они контактируют разветвлениями осевого цилиндра с клетками, возбуждающими их (рецепторы эпителиальных тканей). Несвободные нервные окончания отличаются тем, что в своем составе они содержат все компоненты нервного волокна. Если они покрыты соединительнотканной капсулой, они называются инкапсулированными (тельце Фатер-Пачини, осязательное тельце Мейснера, терморецепторы колбы Краузе, тельца Руффини и др.).

Разнообразно строение рецепторов мышечной ткани, часть которых обнаруживается в наружных мышцах глаза. В этой связи на них мы остановимся более подробно. Наиболее распространенным рецептором мышечной ткани является нервно-мышечное веретено (рис. 1.5.6). Это образование регистрирует растяжение волокон поперечно-полосатых мышц. Представляют они собой сложные инкапсулированные нервные окончания, обладающие как чувствительной, так и двигательной иннервацией. Число веретен в мышце зависит от ее функции и тем выше, чем более точными движениями она обладает. Нервно-мышечное веретено располагается вдоль мышечных волокон. Веретено покрыто тонкой соединительнотканной капсулой (продолжение периневрия), внутри которой находятся тонкие поперечнополосатые интрафузальные мышечные волокна двух видов:

  • волокна с ядерной сумкой - в расширенной центральной части которых содержатся скопления ядер (1-4- волокна/веретено);
  • волокна с ядерной цепочкой - более тон кие с расположением ядер в виде цепочки в центральной части (до 10 волокон/веретено).

Чувствительные нервные волокна образуют кольцеспиральные окончания на центральной части интрафузальных волокон обоих типов и гроздьевидные окончания у краев волокон с ядерной цепочкой.

Двигательные нервные волокна - тонкие, образуют мелкие нервно-мышечные синапсы по краям интрафузальных волокон, обеспечивая их тонус.

Рецепторами растяжения мышцы являются также нервно-сухожильные веретена (сухожильные органы Гольджи). Это веретеновидные инкапсулированные структуры длиной около 0,5-1,0 мм. Располагаются они в области соединения волокон поперечнополосатых мышц с коллагеновыми волокнами сухожилий. Каждое веретено образовано капсулой из плоских фиброцитов (продолжение периневрия), которая охватывает группу сухожильных пучков, оплетенных многочисленными терминальными веточками нервных волокон, частично покрытых леммоцитами. Возбуждение рецепторов возникает при растяжении сухожилия во время мышечного сокращения.

Эфферентные нервные окончания несут информацию от центральной нервной системы к исполнительному органу. Это окончания нервных волокон на мышечных клетках, железах и др. Более подробное их описание будет приведено в соответствующих разделах. Здесь мы подробно остановимся лишь на нервно-мышечном синапсе (моторная бляшка). Моторная бляшка располагается на волокнах поперечнополосатых мышц. Состоит она из концевого ветвления аксона, образующего пресинаптическую часть, специализированного участка на мышечном волокне, соответствующего постсинаптической части, и разделяющей их синаптической щели. В крупных мышцах один аксон иннервирует большое количество мышечных волокон, а в небольших мышцах (наружные мышцы глаза) каждое мышечное волокно или их небольшая группа иннервируется одним аксоном. Один мотонейрон в совокупности с иннервируемыми им мышечными волокнами образует двигательную единицу.

Пресинаптическая часть формируется следующим образом . Вблизи мышечного волокна аксон утрачивает миелиновую оболочку и дает несколько веточек, которые сверху покрыты уплощенными леммоцитами и базальной мембраной, переходящей с мышечного волокна. В терминалах аксона имеются митохондрии и синаптические пузырьки, содержащие ацетилхолин.

Синаптическая щель имеет ширину 50 нм. Располагается она между плазмолеммой ветвлений аксона и мышечного волокна. Содержит она материал базальной мембраны и отростки глиальных клеток, разделяющих соседние активные зоны одного окончания.

Постсинаптическая часть представлена мембраной мышечного волокна (сарколеммой), образующей многочисленные складки (вторичные синаптические щели). Эти складки увеличивают общую площадь щели и заполнены материалом, являющимся продолжением базальной мембраны. В области нервно-мышечного окончания мышечное волокно не имеет исчерченности. содержит многочисленные митохондрии, цистерны шероховатого эндоплазматического ретикулума и скопление ядер.

Механизм передачи нервного импульса на мышечное волокно сходен с таковым в химическом межнейронном синапсе. При деполяризации пресинаптической мембраны происходит выделение ацетилхолина в синаптическую щель. Связывание ацетилхолина с холинорецепторами в постсинаптической мембране вызывает ее деполяризацию и последующее сокращение мышечного волокна. Медиатор отщепляется от рецептора и быстро разрушается ацетил-холинэстеразой.

Регенерация периферических нервов

При разрушении участка периферического нерва в течение недели наступает восходящая дегенерация проксимальной (ближайшей к телу нейрона) части аксона с последующим некрозом как аксона, так и шванновской оболочки. На конце аксона формируется расширение (ретракционная колба). В дистальной части волокна после его перерезки отмечается нисходящая дегенерация с полным разрушением аксона, распадом миелина и последующим фагоцитозом детрита макрофагами и глией (рис. 1.5.8).

Рис. 1.5.8. Регенерация миелинового нервного волокна: а - после перерезки нервного волокна проксимальная часть аксона (1) подвергается восходящей дегенерации, миелиновая оболочка (2) в области повреждения распадается, перикарион (3) нейрона набухает, ядро смещается к периферии, хромафильная субстанция (4) распадается; б-дистальная часть, связанная с иннервируемым органом, претерпевает нисходящую дегенерацию с полным разрушением аксона, распадом миелиновой оболочки и фагоцитозом детрита макрофагами (5) и глией; в - леммоциты (6) сохраняются и митотически делятся, формируя тяжи - ленты Бюгнера (7), соединяющиеся с аналогичными образованиями в проксимальной части волокна (тонкие стрелки). Через 4-6 недель структура и функция нейрона восстанавливается, от проксимальной части аксона дистально отрастают тонкие веточки (жирная стрелка), растущие вдоль ленты Бюгнера; г - в результате регенерации нервного волокна восстанавливается связь с органом-мишенью и регрессирует ее атрофия: д - при возникновении преграды (8) на пути регенерирующего аксона компоненты нервного волокна формируют травматическую неврому (9), которая состоит из разрастающихся веточек аксона и леммоцитов

Начало регенерации характеризуется сначала пролиферацией шванновских клеток , их передвижением вдоль распавшегося волокна с образованием клеточного тяжа, лежащего в эндоневральных трубках. Таким образом, шванновские клетки восстанавливают структурную целостность в месте разреза . Фибробласты также пролиферируют, но медленнее шванновских клеток. Указанный процесс пролиферации шванновских клеток сопровождается одновременной активацией макрофагов, которые первоначально захватывают, а затем лизируют оставшийся в результате разрушения нерва материал.

Следующий этап характеризуется прорастанием аксонов в щели , образованные шванновскими клетками, проталкиваясь от проксимального конца нерва к дистальному. При этом от ретракционной колбы в направлении дистальной части волокна начинают отрастать тонкие веточки (конусы роста). Регенерирующий аксон растет в дистальном направлении со скоростью 3-4 мм сут вдоль лент из шванновских клеток (ленты Бюгнера), которые играют направляющую роль. В последующем наступает дифференциация шванновских клеток с образованием миелина и окружающей соединительной ткани. Коллатерали и терминали аксонов восстанавливаются в течение нескольких месяцев. Регенерация нервов происходит только при условии отсутствия повреждения тела нейрона , небольшом расстоянии между поврежденными концами нерва, отсутствии между ними соединительной ткани. При возникновении преграды на пути регенерирующего аксона развивается ампутационная нейрома. Регенерация нервных волокон в центральной нервной системе отсутствует.

Статья из книги: .

Тема. Строение слуховой сенсорной системы

Вопросы:

1. Периферический отдел слуховой системы: строение внешнего, среднего и внутреннего уха.

2. Ход проводящих путей слуховой сенсорной системы.

3. Корковый отдел.

Слуховая сенсорная система состоит из 3 отделов: периферирический, проводниковый, корковый.

Периферический отдел представлен наружным, средним, внутренним ухом (рисунок 1).

Рисунок 1. Строение уха

Наружное ухо состоит из ушной раковины и наружного слухового прохода.

1. Ушная раковина состоит из эластического хряща, покрытого кожей. Особенно кожный этот хрящ у ребёнка, поэтому даже незначительные удары по уху могут привести к образованию гематомы, с последующим её нагноением и деформации раковины. Хрящ имеет множество завитков и углублений - это связано с его защитной функцией. Ухо имеет воронкообразную форму, которая способствует улавливанию звуков и локализацию их в пространстве. В нижней части ушной раковины хрящ отсутствует - точка уха. Она состоит целиком из жировой клетчатки. Величина ушной раковины, её форма, уровень прикрепления к голове у каждого человека индивидуально (наследуется генетически). Однако отлично характерное строение ушной раковины у детей (наследственными заболеваниями, болезнь Дауна). Ушная раковина прикрепляется к голове при помощи мышц и связок, причём мышцы, двигающие ушную раковину, носят рудиментарный характер (недоразвиты).

2. Наружный слуховой проход начинается углублением в центре ушной раковины и направлен вглубь височной кости, заканчивается барабанной перепонкой. Т.о. барабанная перепонка не относится ни к наружному, ни к среднему уху, а лишь отделяет их. У взрослых наружный слуховой проход имеет длину 2,5-3 см. У детей он короче из-за недоразвития костного отдела. У новорождённого слуховой проход имеет вид щели и заполнен слущившимися эпителиальными клетками. Только к 3месяцам этот проход полностью очищается. Наружное ухо по своим параметрам приближается к уху взрослого = 12 годам. Его просвет становится овальным, и диаметр составляет 0,7-1см. Нормальный слуховой проход состоит из 2 частей:

Наружная часть (перепончато-хрящевая) - является продолжением ушного хряща.

Внутренняя часть (костная) - в плотную подходит к барабанной перепонке. Особенностью строения является то, что, самый узкий участок наружного прохода расположен вместе перехода одной части в другую. Поэтому, именно здесь излюбленное место образования серной пробки. В коже наружного слухового прохода имеются волоски и серные железы, которые продуцируют серу.

Причина образования серной пробки:

1. избыточное продукция серы;



2. изменеие свойств серы (повышенная вязкость);

3. анатомическая (врожденная) узость и изогнутость наружного слухового прохода.

Наружный слуховой проход имеет 4 стенки. Его передняя стенка прилегает к головке нижнечелюстного сустава, поэтому при ударах по подбородку происходит травматизация головкой нижнечелюстного сустава наружного слухового прохода и кровотечения.

Барабанная перепонка отделяет наружное ухо от среднего. Представляет собой тонкую, но эластичную мембрану толщиной 0,1 мм., диаметр 0,8-1см. Барабанная перепонка имеет 3 слоя:

1. кожный (эпидермальный);

2. соединительнотканный;

3. слизистый.

Первый слой является продолжением кожи наружного слухового прохода. Второй слой состоит из густо переплетенных циркулярных и радиальных волокон. Третий слой является продолжением слизистой оболочки барабанной полости.

К центру барабанной перепонки прикрепляется рукоятка молоточка. Это место называется пупок. Барабанная перепонка имеет 3 слоя только в наружной части. Во второй её части расслабленной она имеет только 2 слоя без среднего. Осмотр барабанной перепонки называется отоскопия. При осмотре здоровая перепонка имеет перламутрово-белый цвет, форму конуса, выпуклостью обращённой внутрь, т.е. в ухо.

Рисунок 2. Строение барабанной перепонки

Среднее ухо состоит из:

Барабанной полости, в ней находятся слуховые косточки, слуховые мышцы и евстахиевы трубы;

Ячейки воздухоносного сосцевидного отростка;

Барабанная полость имеет вид шестигранника:

а/ верхняя стенка барабанной полости - крыша. У маленьких детей она имеет отверстие. Поэтому очень часто у детей гнойные отиты осложняются прорывом гноя на мозговые оболочки (гнойный менингит);

б/ нижняя стенка - дно, имеет отверстие, что может приводить к прорыву инфекции в кровь, в кровеносные русла. Так как нижняя стенка расположена над луковицей яремной вены. Это может привести к осложнению (сепсис онтогенный);

в/ передняя стенка. На передней стенке расположены отверстия - вход в евстахиеву трубу;

г/ задняя стенка. На ней расположен вход в пещеру сосцевидного отростка. Задней стеной барабанной полости является костная пластинка, которая отделяет средне ухо от внутреннего. На ней имеются 2 отверстия: одно из них называют овальное и круглое окно. Овальное окно закрыто стременем. Круглое прикрыто вторичной барабанной перепонкой. В области задней стенки проходит костный канал лицевого нерва. При воспалении среднего уха инфекция может переходить на этот нерв, вызывая неврит лицевого нерва, и как следствие перекосы лица.

Слуховые косточки соединены в определённой последовательности:

Молоточки;

Наковальня;

Рисунок 3. Строение слуховых косточек

Рукоятка молоточка соединяется с центром барабанной перепонки. Головка молоточка соединяется с помощью сустава с телом наковальни. Подножная пластинка стремени вставляется в овальное окно, которое расположено на костной стенке внутреннего уха. Т.о. колебания барабанной перепонки через систему слуховых косточек передаются на внутреннее ухо. Слуховые косточки подвешены в барабанной полости при помощи связок. В полости среднего уха есть слуховые мышцы (их 2):

Мышца, натягивающая барабанную перепонку. Она принадлежит защитной функции. Она предохраняет барабанную перепонку от повреждения при действии сильных раздражителей. Это связано с тем, что при сокращении этой мышцы движение барабанной перепонки ограничено.

Мышца стременная. Она отвечает за подвижность стремени в овальном окне, что имеет большое значение для проведения звуков во внутреннее ухо. Установлено, что при блокаде овального окна развивается глухота.

Слуховая «евстахиева» труба. Это парное образование, которое соединяет носоглотку и полость среднего уха. Вход в евстахиеву трубу расположен на задней стенке барабанной полости. Евстахиева труба состоит из 2 отделов:

Костного 1/3 трубы;

Перепончатого 2/3 трубы.

Костный отдел сообщается с барабанной полостью, а перепончатый - носоглоткой.

Длина слуховой трубы у взрослого человека = 2,5см, диаметр = 2-3мм. У детей она короче и шире чем у взрослого. Это связано с недоразвитием костной кости слуховой трубы. Поэтому у детей инфекция может легко переходить из барабанной перепонки на слизистую слуховой трубы и носоглотку, и наоборот, из носоглотки поступать в среднее ухо. Поэтому дети часто болеют отитом, источником которого является воспалительный процесс в носоглотке. Слуховая труба выполняет вентиляционную функцию. Установлено, что в спокойном состоянии её стенки прилегают друг к другу. Открытие труб происходит во время глотания, зевания. В этот момент воздух из носоглотки поступает в полость среднего уха - дренажная функция трубы. Она является той трубой, которая способствует оттоку гноя или другого ээксудата из полости среднего уха при воспалении. Если этого не происходит, возможен прорыв инфекции через крышу на мозговые оболочки, либо разрыв барабанной перепонки (прободение).

Воздухоносные ячейки сосцевидного отростка.

Сосцевидный отросток находится на безволосом пространстве позади ушной раковины. На разрезе сосцевидный отросток напоминает «пористый шоколад». Самая большая воздухоносная ячейка сосцевидной кости называется пещера. Она имеется уже у новорождённого. Она выстлана слизистой оболочкой, которая является продолжением слизистой оболочки барабанной полости. Благодаря соединению пещеры и барабанной полости, инфекция может переходить из среднего уха в пещеру, а затем на костное вещество сосцевидного отростка, вызывая его воспаление - мастоидит.

Рисунок 4. Строение среднего уха.

Внутреннее ухо (лабиринт) – 2 части:

1. Костный лабиринт.

2. Перепончатый лабиринт, который находится в костном как в футляре.

Между ними есть пространство, которое называется перелимфотическое. В нём находится ушная жидкость - перилимфа. Внутри перепончатого лабиринта также есть лимфа - эндолимфа. Т.о. во внутреннем ухе имеется 2 ушные жидкости, которые отличаются по составу и функциям. Лабиринт имеет 3 части:

Преддверие;

Полукружные каналы;

Преддверие и полукружные каналы относятся к вестибулярному аппарату. Улитка относится к слуховой сенсорной системе. Она по форме напоминает садовую улитку, образована спиральным каналом, который закруглён в 2,5 оборота. Диаметр канала уменьшается от основания к вершине улитки. В центре улитки находится спиральный гребень, вокруг которого закручена спиральная пластина. Эта пластина выдаётся в просвет спирального канала. На разрезе этот канал имеет следующее строение: двумя мембранами основной и вестибулярный аппарат делится на 3 части, в центре образуя улитковый вход. Верхняя мембрана называется вестибулярная, нижняя - основная. На основной мембране периферический рецептор уха - кортиев орган. Т.о кортиев орган расположен в улитковом ходу, на основной мембране.

Основная мембрана - это наиболее значимая стенка улиткового хода, состоит из множества натянутых струн, которые называются слуховые струны. Установлено, что длина струн и их степень натяжения зависит от того, на каком завитке улитки они находятся. Выделяют 3 завитка улитки:

1. основной (нижний);

2. средний;

3. верхний.

Установлено, что в нижнем завитке находятся короткие и тугонатянутые струны. Они резонируют на высокие звуки. На верхнем завитке находятся длинные и слабонатянутые струны. Они резонируют на низкие звуки.

Кортиев орган является периферическим рецептором слуха. Состоит из 2 видов клеток:

1.Опорные клетки (столбовые) - имеют вспомогательное значение.

2.Волосковые (наружные и внутренние).

Главное значение имеют внутренние волосковые клетки. В них происходит трансформация звуковой энергии в физиологический процесс нервного возбуждения, т.е. образование нервных импульсов.

Опорные клетки расположены под углом друг к другу, образуя тоннель. В нём, в один ряд, располагаются внутренние волосковые клетки. По своей функции эти клетки являются вторичночувствующими. Их головной конец закруглён и имеет волоски. Сверху волоски покрывает мембрана, которая называется покровной. Установлено, что при смещении покровной мембраны относительно волосков, возникают ионные токи.

Ушные жидкости.

Перилимфа - по своему составу напоминает спинномозговую жидкость, но содержит при этом больше белка и ферментов. Её основная функция - это приведение в колебательное состояние основной мембраны.

Эндолимфа - по своему составу похожа на внутриклеточную жидкость. В ней много растворимого кислорода, и поэтому она служит питательной средой для кортиевого органа.

Строение и функции центральной и периферической нервной системы

Нервная система - это совокупность анатомически и функционально связанных между собой нервных клеток с их отростками. Различают центральную и периферическую нервную систему. Центральная нервная система представлена головным и спинным мозгом. Головной мозг располагается в полости черепа, спинной - в позвоночном канале. Периферическую нервную систему образуют черепные и спинно-мозговые нервы и относящиеся к ним корешки, спинно-мозговые узлы и сплетения.

Основной функцией нервной системы является регуляция жизнедеятельности организма, поддержание в нем постоянства внутренней среды, обменных процессов, а также осуществление связи с внешним миром. Эти функции присущи всем отделам нервной системы. Наиболее сложной является функция коры большого мозга, с которой связана психическая деятельность человека. Однако психические процессы немыслимы без связи коры большого мозга - высшего отдела нервной системы - с другими ее отделами, с помощью которых кора получает информацию из внешней среды и внутренних органов и посылает импульсы к исполнительным рабочим органам, т.е. к мышцам.

Функциональной и структурной единицей нервной системы является нейрон - нервная клетка (рис.1). Нейрон состоит из тела, дендритов (коротких ветвящихся отростков), количество которых может быть различным, и аксона (длинного отростка). Передача импульсов по нейронам происходит всегда в определенном направлении - по дендритам к клетке, а по аксону - от клетки. Соединения между отдельными нейронами называются синапсами. В синапсе аксон одного нейрона вступает в связь с телом или дендритами другого. Синапсы могут быть и нервно-мышечными. В синапсах передача возбуждения осуществляется с помощью особых химических веществ-передатчиков, называемых медиаторами.

Рис.1. Схема нейрона: 1 - тело нейрона; 2 - дендриты; 3 - аксон; 4 - миелиновая оболочка; 5 - осевой цилиндр; 6 - нервно-мышечный синапс.

Отростки нервных клеток - нервные волокна - могут быть миелиновыми (покрытыми миелиновой оболочкой) и безмиелиновыми (лишенными миелина). Миелиновое волокно имеет осевой цилиндр, миелиновую оболочку и нейролемму (шванновскую оболочку). Нейролемма есть только в периферической нервной системе. В центральной нервной системе роль нейролеммы выполняют клетки нейроглии - своего рода опорной ткани нервных элементов. Одна из важнейших функций нейроглии - электроизоляция нервных волокон. В периферической нервной системе ее осуществляет нейролемма. Скопление тел нервных клеток образует серое вещество мозга, а их отростков - белое вещество.

Совокупность нейронов, расположенных вне центральной нервной системы, называется нервным узлом (спинно-мозговой, узел вегетативного сплетение ядер). Нервом именуют ствол объединенных нервных волокон. Различают чувствительные, двигательные, вегетативные и смешанные нервы. В зависимости от функции нейроны могут быть чувствительными, двигательными и вставочными. Совокупность нейронов, регулирующих какую-либо функцию, называют нервным центром. Так как большинство функций нервной системы осуществляется при участии большого количества нейронов, располагающихся в различных ее отделах, введено понятие функциональной системы - комплекса физиологических механизмов, связанных с выполнением какой-либо определенной функции. Функциональная система включает в разных сочетаниях структурные элементы центральной и периферической нервной системы: корковые и подкорковые нервные центры, проводящие пути, периферические нервы, исполнительные органы. Одни и те же структурные элементы могут входить в состав множества функциональных систем (например, черепные и спинно-мозговые нервы участвуют в образовании ряда чувствительных и двигательных систем). Функциональные системы характеризуются динамичностью. Сочетание образующих их структурных элементов может изменяться, особенно в патологических условиях. Так, определенные участки предцентральной извилины являются частью системы произвольных движений, но при их разрушении в эту систему могут входить расположенные рядом с ними участки коры большого мозга.

В основе функциональной деятельности нервной системы лежит рефлекс. Рефлексом называется ответная реакция организма на раздражение. Осуществляется рефлекс при участии цепи нейронов (не менее двух), называемой рефлекторной дугой (см. цв. вкл., рис. I, с.32). Один из нейронов рефлекторной дуги воспринимает раздражение (афферентная часть дуги), второй осуществляет ответ (эфферентная часть). Большинство рефлекторных дуг имеет сложную структуру за счет вставочных нейронов, перерабатывающих информацию. В настоящее время учение физиолога И.П. Павлова о рефлексах дополнено понятием о рефлекторных кольцах. Доказано, что рефлекторный акт не заканчивается одномоментным ответом рабочего органа. Существует обратная связь. Мышца, сокращающаяся в ответ на раздражение, посылает импульсы в центральную нервную систему, что является источником ряда процессов, влияющих на состояние этой мышцы, в частности на ее тонус. Так возникает замкнутое рефлекторное кольцо. Рефлекторная деятельность нервной системы обеспечивает восприятие организмом любых изменений внешнего мира. Способность восприятия внешних влияний называется рецепцией. Особенно большое значение для нормальной жизнедеятельности организма и установления его связи с внешним миром имеет чувствительность - способность ощущать воспринятые нервной системой раздражения.

Образования центральной и периферической нервной системы, осуществляющие восприятие и анализ информации о явлениях, происходящих как в окружающей организм среде, так и внутри самого организма, носят название анализаторов. Различают зрительный, слуховой, вкусовой, обонятельный, чувствительный и двигательный анализаторы. Каждый анализатор состоит из периферического (рецепторного) отдела, проводниковой части и коркового отдела, в котором происходит анализ и синтез воспринимаемых раздражений. Процесс восприятия начинается с периферии и заканчивается в коре большого мозга. В связи с расположением в коре большого мозга центральных отделов различных анализаторов в ней сосредоточивается вся информация, поступающая из внешней и внутренней среды, что является основой для психической (высшей нервной) деятельности. Анализ полученной корой информации - это распознавание, г н о з и с. Этот процесс может происходить при участии как одного, так и нескольких анализаторов. К функциям коры большого мозга относятся также выработка планов (программ) действий и их осуществление, праксис. В этом процессе принимают участие не менее двух анализаторов (чувствительный и двигательный). Одним из видов гнозиса и праксиса является речь и связанные с нею чтение, письмо, счет, которые представляют собой проявления высшей нервной деятельности. Рефлексы делят на условные и безусловные. Безусловные рефлексы являются врожденными, отличаются определенным постоянством и характерной для каждого рефлекса рефлекторной дугой. Например, коленный рефлекс, который заключается в разгибании голени при ударе молоточком по связке надколенника, имеет рефлекторную дугу, состоящую из чувствительных волокон бедренного нерва, спинно-мозговых узлов, задних корешков, серого вещества поясничного отдела спинного мозга, передних корешков и двигательных волокон бедренного нерва (см. цв. вкл., рис. I, с.32). Условные рефлексы являются приобретенными, т.е. вырабатываются в процессе опыта. В отличие от безусловных рефлексов они не постоянны. Так, человека можно обучить какому-либо иностранному языку, но если он длительное время не будет разговаривать на нем и слышать его, то забудет этот язык. Дуги условных рефлексов обязательно замыкаются в коре большого мозга, в отличие от безусловных, дуги которых замыкаются на разных уровнях центральной нервной системы (в спинном мозге, стволе мозга, в подкорковых ядрах, в коре большого мозга). В основе высшей нервной деятельности лежит возможность возникновения бесконечного множества связей для образования новых условных рефлексов.

Литература

1. Демиденко Т.Д., Гольбат Ю. В "Руководство для среднего медицинского персонала" Л.: Медицина, 1977. - 272 с.

Содержание

ЦНС – это головной и спинной мозг, которые отвечают за правильное функционирование организма. Для этого существует периферическая нервная система, состоящая из нервов, рецепторов, узлов, чувствительных клеток, передающих сигналы от всего организма центральной НС. Многие заболевания: от радикулита до вертеброгенных поражений связаны конкретно с поражением ПНС, которая не имеет собственных защитных механизмов или гематоэнцефалического барьера.

Что такое периферическая нервная система

В структуру периферической нервной системы входят нервные окончания, ганглии (локализированные пучки нейронов во всех частях организма), органы чувств, нервы, нервные узлы. Сама ПНС условно разделена на несколько подсистем, которые в комплексе своих действий передают информацию об окружающем мире, состоянии организма в мозг.

Фактически, нервная периферическая система отвечает за взаимодействие с внешним миром, передачу информации в мозг, адекватное функционирование внутренних органов, правильную реакцию на внешние раздражители после получения ответного сигнала от мозга (например, выброс адреналина в момент опасности). В отличие от ЦНС данная часть ничем не защищена и подвержена большому количеству опасностей.

Классификация

Периферический отдел нервной системы принято разделять на несколько подсистем в зависимости от направления ее действия (внешний или внутренний мир), места сообщения с ЦНС, временного момента работы. Однако, они настолько тесно взаимодействуют, что часто тяжело отнести какой-то процесс к отдельной системе. Медицинское разделение частей нервной периферической системы по основным типам функционирования:

  1. Соматическая. Система обеспечивает самостоятельное функционирование организма в окружающем мире, передвижение, управление мышцами. Сюда же относятся органы чувств как способ восприятия окружения, полноценного взаимодействия с ним.
  2. Вегетативная (висцеральная). Эта часть нервной периферической системы отвечает за внутренние органы, железы, сосуды и частично за некоторые мышцы.

Вегетативную систему принято также разделять по частям головного и спинного мозга, центрам которых соответствуют нервные окончания, и периодам функционирования:

  • симпатическая система: отвечает за пульс, моторику желудка, дыхание, кровяное давление, работу мелких бронхов, расширение зрачка и т.д. обслуживается симпатическими волокнами, начинающимися в боковых рогах спинного мозга, активируется в момент стресса;
  • парасимпатическая система: функционально противопоставлена предыдущей, к примеру, отвечает за сужение зрачка (большинство органов получают оба сигнала от обеих частей нервной периферической системы), сигналы получает от центров в крестцовом отделе спинного мозга и стволе головного, работает в момент покоя человека.

Функции

Нервная периферическая система представляет собой парные нервы трех ключевых групп: черепные, спинномозговые, периферические. Они отвечают за передачу импульсов, команд телу, органам от мозга и обратной связи его с внешним миром. Каждая группа окончаний отвечает за конкретные функции, поэтому их повреждение влечет к потере той или иной способности или ее модификации. Вот только некоторые жизненно важные процессы, которые контролирует ПНС:

  • выработка гормонов, ответственных за психологические реакции (волнение, радость, страх);
  • сенсорное определение мира (зрительное восприятие, тактильные ощущения, вкус, запах);
  • отвечает за функционирование слизистых покровов;
  • координация в пространстве (вестибулярный аппарат);
  • отвечает за функционирование мочеполовой, кровеносной системы, кишечника;
  • выработка пептидов, нейропептидов;
  • сокращение сухожилий;
  • отвечает за регулирование частоты сердцебиения и многие другие.

Периферические нервы

Это группа пучков смешанной функциональности. В отличие от других элементов нервной периферической системы эти нервы сформированы в мощные каналы, изолированные соединительной тканью. Из-за этой особенности они гораздо более устойчивы к повреждениям, но их травмирование несет большие проблемы для систем организма. Периферические нервные пучки разделены на три группы по месту крепления к поясничному столбу:

  • плечевая;
  • поясничная;
  • крестцовая.

Спинные нервы шейного отдела

ПНС представляет собой парные нервы в количестве 12 пар, которые отвечают за передачу импульсов, команд телу, органам от мозга и обратной связи с внешним миром. Каждая группа нервных окончаний отвечает за конкретные функции, поэтому их повреждение влечет к потере той или иной способности или ее модификации. 12 пар мозговых (черепных) нервов ПНС:

  1. Обонятельный.
  2. Зрительный (отвечает за зрачковую реакцию).
  3. Глазодвигательный.
  4. Блоковый (отвечает за контроль движения глаз).
  5. Троичный – передает сигналы от лица, контролирует процесс жевания.
  6. Отводящий (принимает участие в движении глаз).
  7. Лицевой – управляет движением мышц лица,отвечает за восприятие вкуса.
  8. Преддверно-улитковый. Отвечает за передачу слуховых импульсов, чувство равновесия.
  9. Языкоглоточный.
  10. Блуждающий – отвечает за контроль мышц глотки, гортани, органов в груди, брюшине.
  11. Спинной – отвечает за работу мышц шеи, плеч.
  12. Подъязычный.

Плечевое нервное сплетение

Это комплекс из 4-8 шейного и 1-2 спинномозговых нервов, которые отвечают за иннервацию кожи рук и функционирование мышц. Само сплетение локализировано в двух областях: в подмышечной ямке и боковом треугольнике шеи. Короткие и длинные ветви нервов состоят из каналов, каждый из которых отвечает за отдельную мышцу и нервное восприятие кожи, мышц и костей.

Нейромедиаторы

Считалось, что обмен сигналами между нервными окончаниями, ЦНС, нервной периферической системой происходит посредством электрических сигналов. Но исследования показали, что их недостаточно, и были выявлены химические вещества – нейромедиаторы. Их назначение – усиление связей между нейронами и их модификация. Количество нейромедиаторов до конца еще не определено. Вот некоторые из известных:

  • глутамат;
  • ГАМК (гамма-аминомасляная кислота);
  • адреналин;
  • дофамин;
  • норадреналин;
  • серотонин;
  • мелатонин;
  • эндорфины.

Заболевания периферической нервной системы

ПНС настолько обширна и выполняет такое количество функций, что вариантов ее повреждения великое множество. При этом следует помнить, что данная система практически ничем не защищена, кроме собственного строения и окружающих тканей. ЦНС имеет свои защитные и компенсирующие механизмы, а нервная периферическая система подвержена механическим, инфекционным, токсическим воздействиям. Болезни периферической нервной системы:

  • вертеброгенные поражения: рефлекторные синдромы, цервикалгия, цервикокраниалгия, цервикобрахиалгия, корешковые синдромы, радикулит корешков, радикулоишемия, торакалгия, люмбалгия, люмбаго, амиотрофия, фуникулиты, плексит;
  • поражения, воспаления нервных корешков, сплетений, узлов: менингорадикулиты, плекситы, травмы сплетений, ганглиониты, трунциты;
  • множественные поражения, воспаления корешков: полиневритический синдром, васкулит, полирадикулоневриты (Гийена-Барре и др.), токсические, хронические интоксикации (причины - алкоголизм, отравление на производстве токсинами, диабет и тд.), медикаментозные, токсикоинфекционные (ботулизм, дифтерия, воздействие вирусов или инфекций), аллергические, дисциркуляторные, идиопатические;
  • травматические синдромы (канала Гиена, туннельный, мононевриты, полиневриты, мультиневриты, кубитального канала и др.);
  • поражения черепных нервов: невриты, прозопалгии (монотипы и сочетания), ганглиониты, воспаления нервных узлов.

Лечение

Из-за сложности ПНС и большого количества заболеваний, связанных с ней, реальное лечение периферической нервной системы подразумевает комплексный подход. При этом важно помнить, что устранение конкретной болезни требует индивидуальной системы медикаментозных, оперативных, физиотерапевтических вмешательств. Это означает, что нет универсального подхода к ликвидации заболевания, но можно использовать простые превентивные меры, которые предупредят появление проблем (здоровый образ жизни, правильное питание, полноценные регулярные физические нагрузки).

Медикаментозное

Лекарственное воздействие на проблемные участки ПНС направлено на купирование симптоматики, болевых синдромов (негормональные противовоспалительные средства, в редких случаях мощные анальгетики, медикаментозные наркотики), улучшение проводимости тканей с помощью витаминотерапии, замедление распространения нарушений. Для восстановления полноценной функциональности при проблемах с мышечным тонусом используются лекарства, провоцирующие активность нервных связей.

Физиопроцедуры

Данный метод подразумевает нелекарственное воздействие на пораженные участки организма. Зачастую несерьезные заболевания, связанные с малоподвижным образом жизни, можно вылечить, используя только физиотерапию без использования препаратов. Современный спектр воздействия на организм обширен и включает в себя технологические способы и мануальную терапию:

  • ультразвук;
  • магнитолазерная терапия;
  • электрофорез;
  • дарсонвализация;
  • разные типы массажа.

ЛФК

Лечебная физкультура подразумевает растормаживание угнетенных нервов и прилежащих к ним участков. Комплекс упражнений подбирается под конкретное заболевание. Важно правильно выявить проблему, потому что неверно выбранный курс может усугубить проблему вместо ее терапии. Лечебная физкультура категорически противопоказана при общем тяжелом состоянии пациента, при сильном боевом синдроме. Основные задачи ЛФК при травмах и заболеваниях:

  • стимуляция кровообращения для предупреждения сращений, дегенеративных изменений в тканях;
  • борьба с развитием ограничения подвижности суставов, позвоночного столба;
  • общеукрепляющее воздействие на организм в целом.

Массаж

Данный метод лечения эффективно борется с заболеваниями нервной периферической системы вне зависимости от локализации. Главное требование – высококлассный специалист. При проблемах с нервами неправильная мануальная терапия может радикально ухудшиться состояние пациента вплоть до невозвратных последствий. Поэтому даже при незначительных дисфункциях нервных связях (онемение кожных покровов, ухудшение подвижностей суставов, потеря чувствительности кожи, болевые синдромы) следует обращаться к врачу, следовать его рекомендациям без самодеятельности.

Санаторно-курортное лечение

Такой способ лечения нервной периферической системы можно назвать идеальным, потому что на период реабилитации пациент покидает рабочую среду, постоянно находится под контролем специалистов. Различные лечебные санатории специализируются по разным заболеваниям ПНС. Объединяет их комплексное воздействие медикаментами, ЛФК, климатотерапией, правильным питанием, специфическими процедурами, направленными на конкретную проблему (грязелечение, лечебные ванны, ингаляции).

10 признаков того, что вас не любят

Периферический отдел звуковой членораздельной речи состоит из трех отделов.
К первому отделу относится аппарат, образующий голос, - гортань и голосовые складки.
Гортань представляет собой трубку, расположенную между трахеей и глоткой. Она занимает переднюю часть шеи по срединной ее линии. Гортань является органом, у которого три функции: защитная, дыхательная и голосовая. В речевой системе гортань является органом, образующим голос.
Сама гортань граничит с пищеводом, с боков - с крупными сосудами и нервами; верхний край подходит к подъязычной кости, нижний переходит в трахею (дыхательное горло).
Скелет гортани образуют хрящи. Основной хрящ - перстневидный - по форме напоминает перстень. Узкая часть его обращена вперед, а так называемая печатка перстня - внутрь к глоточной поверхности. Над перстневидным хрящом располагается ЩИТОВИДНЫЙ ХРЯЩ, который состоит из двух пластинок, поставленных под углом, у места соединения их образуется вырезка.
Щитовидный хрящ у мужчин резко выдается на шее и носит название АДАМОВА яблока или КАДЫКА. Сзади, на верхней поверхности перстневидного хряща, раполагаются два черпаловидных хряща, имеющих у своего основания два отростка - мышечный и голосовой. К последнему прикрепляется голосовая мышца. Кроме того, вход в гортань закрывается особым хрящом - НАДГОРТАННИКОМ, укрепленным при помощи связок у верхнего края щитовидного хряща. Все хрящи гортани, помимо суставов, скреплены еще многочисленными связками.
Мышцы гортани разделяются на наружные и внутренние. Наружные мышцы, соединяясь с другими частями скелета, поднимают и опускают гортань или фиксируют ее в определенном положении. К ним относятся грудинно-подъязычные мыщцы, прикрепленные своими концами к подъязычной кости и грудине. Эти мышцы фиксируют подъязычную кость, оттягивая ее книзу. Грудинно-щитовидные мышцы прикреплены к щитовидному хряшу и подъязычной кости. Эти мышцы укорачивают расстояние между
подъязычной костью и гортанью. Щитоперстневцдная передняя мышца находится между краем перстневидного хряща и нижним краем щитовидного хряща. Эта мышца способствует движению щитовидного хряща вперед и вниз.

Рис. 3. Строение гортани
А - профильный разрез гортани и артикул я рных органов; Б - схема этих органов, снятая с профильного рентгеновского снимка; В - разрез гортани в профиль, более темным выделены голосовые и перстне-щитовидные мышцы; Г - схема расположения косых мышечных пучков голосовой мышцы.
1 - верхняя губа; 2 - верхние зубы; 3 - купол твердого нёба; 4 - мягкое нёбо; 5 - язык; 6 - глоточная полость; 7 - задняя стенка глотки; 8 - подъязычная кость; 9 - надгортанник; 10 - вход в гортань; 11 - щитовидный хрящ гортани; 12 - перстневидный хрящ гортани; 13 - щитовидная железа; 14 - шито-грудинная н подъязычно-грудинная мышцы; 15 - ложная голосовая складка; 16 - моргание в желудочек; 17 - истинная голосовая склаика; 18- черпаловидный хрящ, покрытый мягкими тканями; 19- просвет трахеи; 20- контуры шейных позвонков; 21 - мембрана, натянутая между подъязычной костью и щитовидным хрящом; 22 - подъязычно-надгортанная связка; 23 - передний конец края эластичного конуса (голосовой складки); 24 - голосовая (вокальная) мышца; 25 - задний конец края эластичного конуса (голосовой складки); 26 - перстне-щитовидная мышца; 27 -¦ черпало-перстневидное сочленение; 28 - печатка перстневидного хряща; 29 - жировое тело, заполняющее пространство между надгортанником, подъязычной костью и щитовидным хрящом; 30 - налевязочкая полость гортани.

Src="/files/uch_group35/uch_pgroup214/uch_uch533/image/161.jpg" alt="" />
Рис, 4. Хрящи гортани
А - хрящи гортани сбоку; Б - хрящи гортани сзади; В - хрящи гортани в профильном разрезе; Г - щитовидный хрящ спереди (вверху), сбоку - сзади (посередине) и сзади (внизу); Д - хрящи гортани и подъязычная кость сбоку и сзади; Е - перстневидный хрящ и черпаловндиые хрящи; спереди (вверху), сбоку - сзади (посередине) н мади (внизу). I - тело подъязычной кости; 2 - подъязычно-щитовая мембрана; 3 - боковая пластина щитовидного хряща; 4 - косая выступающая линия щитовидного хряща, служащая для прикрепления мышц: 5 - передний, выступающий вперед кран щитовидного хряща; 6 - нижняя часть эластичного конуса гортани; 7 - щитоперстневидное сочленение (нижние рожки); 8 - кольцевидная часть перстневидного хряща: 9- хрящевые кольца трахеи; 10- листовидная часть надгортанника; 11 - задние концы больших рожек подъязычной кости; 12 - верхние рожки щитовидного хряща; 13 -¦ передний конец утолщенной части эластичного конуса (внутреннего края голосовой складки); 14 - верхушка черпал о видного хряща; 15 - внутренний край голосовой складки; 16 - задний конец утолщенной части эластичного конуса, прикрепляющийся к голосовому (вокальному) отростку черпаловцдного хряща; 17 - мышечный отросток черпаловидного хряща; 18 - перстне-черпаловндное сочленение; 19 - связка щитоперстневидного сочленения; - печатка перстневидного хряща; 21 - мембранозная часть трахеи; 22 - стебелек надгортанника; 23 - голосовой (вокальный) отросток черпаловидного хряща; 24 -- верхний угол боковой пластины щитовидного хряща; 25 - вырезка щитовидного хряща; 26 - нижний край щитовидного хряща.

А - мышцы шеи после снятия кожи и подкожно-жирового слоя; Б - группа глубоких мышц, непосредственно связанных с гортанью; более поверхностные мышцы удалены; В - сжиматепи глотки и мышц языка; череп в профильном разрезе; слева дана схема действия мышц, прикрепляющихся к гортани и к подъязычной кости.
] - шилоязычная мышца; 2 - заднее брюшко двубрюшной мышцы;
3 - мышца дна полости рта; 4 - переднее брюшко двубрюшной мышцы; 5 - шипоподъязычная мышца; б - мышца языка, идущая от подъязычной кости; 7 - средний сжнматель глотки; 8 - тело подъязычной кости; 9 - щи- топодъязьсчиая мышца; 10 - нижний сжнматель глотки; 11 - верхнее брюшко лопаточно-подъязыч- ной мышцы; 12 - подъязычно-грудинная мышца; 13 - щитогрудинная мышца; 14 - грудино-ключично-сосковая мышца; 15 - сухожилия грудино-ключично-сосковой мышцы; 16 - задняя группа мышц шеи; П - нижнее брюшко лопаточно-подъязычной мышцы; 18 - носоглоточная миндалина; 19 - носоглотка; 20 - глоточное отверстие слуховой (евстахиевой) трубы; - разрез мышцы верхнего ежи- мателя глотки; 22 - разрез мышц мягкого нёба; 23 - косая линия щитовидного хряща; 24 - перстне щитовидная мышца; 25 - кольцо перстневидного хряща; 26 - кольца трахеи; 27 - волокна мышц пищевода; 28 - мышца, поднимающая мягкое нёбо; 29 - подблродочно-подъязычная мышца; 30 - щитоподъязычная мембрана.
Рис. 5, Мышцы шеи, управляющие движениями гортани.
Внутренние мышцы гортани служат для выполнения дыхательной и голосообразующей деятельности.
К ним относится щиточерпаловидная внутренняя мышца, или голосовая (парная), заложенная в толще голосовой складки. Благодаря колебаниям складок образуется звук: звук-голос. Мышца эта натянута между внутренним краем щитовидного хряща и голосовым отростком черпаловидного хряща соответствующей стороны. В спокойном состоянии голосовые складки образуют треугольное отверстие для прохождения воздуха, называемое голосовой щелью.

А, Б, В - действие п«рстнещкто- видных мышц, растягивающих голосовые складки: А - вид гортани в профиль (показан ход волокон перстнещитовндных мышц); Б - схема действия этих мышц (сплошной контур - положение хрящей в покое; прерывистый контур - положение в результате действия перстне щитовидных мышц; голосовая складка выделена черным цветом); В - схема действия этих мышц (вид сверху: слева - положение в покое; справа - в результате действия перстнещитовидных мышц).
Г, Д, Е - вид на область входа в гортань сверху и сзади (схематизировано), задние группы мышц отпрепарированы; Г - фальцетное положение голосовых связок: Д - максимальное раскрытие голосовой щели при глубоком вдохе; Е - фонационное положение голосовых складок при грудном звучании голоса; Ж - схема действия мышц при фальцетном голосе; 3 - схема действия мышц при глубоком вдохе; И - схема действия мышц при грудном голосе.
I - надгортанник; 2 - подъязычная кость; 3 - подъязычно-щитовидная мембрана; 4 - передний край щитовидного хряща; 5 - прямое брюшко перстне щитовидной мышцы; б - косое брюшко перстнещитовидной мышцы; 7 -- прикрепление перстне-щитовидной мышцы на передней поверхности кольца перстневидного хряща;8 - перстне-щитовидное сочленение; 9 - переднее прикрепление голосовой складки; 10 - голосовая складка; 11 - заднее прикрепление голосовой складки на вокальном отростке черпаловидного хряща; 12 -
печатка перстневидного хряща; 13 - ложная голосовая складка; 14 - моргай не в желудочек; 15 - голосовая
складка; 16 - верхушка черпаловидного хряща; 17 - мышечный отросток; 18 - косая черпаловидная мышца; 19 - поперечная черпаловидная мышца; 20 - задняя перстнечерпаловидная мышца; 21 - боковая перст- нечерпаловидная мышца; 22 - наружная щиточерпаловидная мышца.
Во время речи голосовые складки сближаются. Над истинными голосовыми складками располагаются по бокам две складки слизистой оболочки, называемые ЛОЖНЫМИ ГОЛОСОВЫМИ СКЛАДКАМИ, а между истинными и ложными голосовыми складками имеются углубления - так называемые морганиевы желудочки, слизистая которых имеет много желез, увлажняющих голосовые складки.
Дыхательная деятельность гортани обеспечивается одной парой мышц перстнечер- паловидной задней, которая только одна расширяет голосовую щель, все остальные мышцы прямо или косвенно содействуют сужению голосовой щели.
Таким образом, антагонистом перстнечерпаловидной задней мышцы является перст- нечерпаловидная боковая мышца, которая сближает голосовые складки.
При образовании звука помимо напряжения голосовых складок сближаются основания черпаловидных хрящей, чтобы полностью закрыть просвет голосовой щели. Это выполняется межчерпаловидными поперечной и косой мышцами гортани, принимающими
участие в голосообразовании. Еще одна мышца гортани - перстнещитовидная передняя, - идущая от перстневидного хряща косо к задней части щитовидного хряща, при своем сокращении удлиняет переднезадний размер гортани и тем самым вызывает натяжение голосовых складок. Родившись в гортани, звуковая волна распространяется вверх и вниз по воздушным путям и тканям, окружающим гортань. Специалистами установлено, что 1/10 - 1/50 часть звуков, родившись в гортани, выходит из ротового отверстия. Другая же часть поглощается внутренними органами и вызывает вибрацию тканей головы, шеи, груди.
Гортань иннервируется (снабжается) ветвями блуждающего нерва - верхним и нижним гортанными нервами, дающими двигательные веточки к мышцам гортани и - чувствительные - к слизистой. Все внутренние мышцы гортани иннервируются нижним гортанным нервом, за исключением перстне-щитовидной мышцы, которая иннервируется гортанным нервом. Он же снабжает слизистую оболочку гортани чувствительными волнами.
Ко второму отделу речеголосового аппарата относится звукопроизводящая, или артикуляционная, система. Это полость рта, носа и глотки, мягкое нёбо, язык с нёбным сводом, зубы, губы и нижняя челюсть.
Образованный при движении голосовых складок звук усиливается благодаря резонирующим полостям глотки, которая представляет собой трубку. Она начинается у основания черепа и доходит до пищевода. Научными исследованиями последних лет доказано, что полость глотки принимает активное участие в звукообразовании, глоточный резонатор выполняет важную роль в звучании речевого голоса. Верхняя часть глотки посредством хоан (отверстий) сообщается с полостью носа и называется носоглоткой. Полость носа разделена носовой перегородкой. Спереди она открывается двумя отверстиями (ноздрями). Полость носа покрыта слизистой оболочкой, имеет придаточные полости: гайморову, лобную, решетчатую и основную. Полость носа выполняет дыхательную и резо- наторную функции. Вместе с придаточными пазухами принимает участие в образовании голоса. Раздражение звуковыми волнами придаточных полостей носа повышает тонус голосовых мышц, отчего усиливается звук и улучшается тембр речевого голоса.
Для правильного произнесения звуков речи и для тембрального характера голоса состояние носовой полости и придаточных пазух имеет большое значение.
Французский исследователь Р. Юссон полагает, что вибрационные ощущения в полости носа и придаточных пазухах раздражают обширные зоны нервных окончаний тройничного нерва и рефлекторно стимулируют деятельность голосовых складок, а это способствует яркости и блеску голоса. Резонаторное участие полости носа и придаточных пазух в речевом голосе усиливает его основной тон.
К органам артикуляции относятся полость рта, мягкое нёбо и полость глотки, язык с нёбным сводом, зубы, губы и нижняя челюсть,
В полости рта сверху находится твердое нёбо, переходящее в заднее. Снизу полость рта ограничена подвижным языком, спереди - зубами, с боков - щеками, сзади расположены зев и глотка.
Глотка представляет собой не только часть дыхательных и пищеварительных путей, но и вспомогательный орган, участвующий в образовании звука. Полость глотки является одним из резонаторов звука совместно с полостью носа и придаточными полостями.

А - профильный разрез через правую носовую полость; Б - вид носовых кодов при осмотре носа спереди; В - фронтальный разрез через нос и лицевую часть черепа; Г - проекция носовых полостей и придаточных полостей коса на наружные покровы лнца.
1 - полость черепа; 2 - лобная кость; 3 - лобная (фронтальная) пазуха; 4 - отверстие канала, ведущего из лобной пазухи в полость носа; 5 - верхняя стенка носовой полости; 6 - обонятельная область слизистой оболочки верхней раковины носа; 7 - верхняя носовая раковина; 8 - средняя носовая раковина; 9 - средний носовой ход; 10 - нижняя носовая раковина; 11 - нижний носовой ход; 12 - мышцы верхней губы; 13 - твердое нёбо; 14 - мягкое нёбо; 15 - носовая перегородка; 16 - верхний носовой ход; 17 - глазница; 18 - пазухи решетчатого лабиринта; 19 - щель верхнего отдела носовой полости; 20 - гайморова (верхнечелюстная) полость; 21 - зубной отросток верхней челюсти; 22 - верхний большой коренной зуб; 23 - пазуха основной кости; 24 - хоана; 25 - глоточное отверстие слуховой (евстахиевой) трубы; 26 - носоглоточная миндалина; 27 - носоглотка.

Не случайно многие иссследователи устанавливают связь между формой ротоглоточного канала и качеством голоса.
Твердое нёбо принимает активное участие в образовании голоса. В работах французского ученого Р. Юссона имеются указания на то, что звуковые волны через твердое нёбо передают раздражение второй ветви тройничного нерва, которая разветвляется на нёбном своде. В результате улучшается качество звука: его яркость и способность нестись вдаль.
Мягкое нёбо, или нёбная занавеска, играет в развитии речевого голоса также большую роль. При ее малой активности голос приобретает "гнусавый" характер.
Напряжение мышц глотки и мягкого нёба (внугриглоточная артикуляция) снимает напряжение мышц языка, нижней челюсти, гортани, улучшая условия голосообразования. В связи с этим Р. Юссон назвал "центральным голосообразующим участком" мягкое нёбо. Подъем мягкого нёба, раскрытие полости глотки обеспечивают большую мощность звука. Тренировка этих мышц (внугриглоточная артикуляция) осуществляется специальными упражнениями.
Следует напомнить, что мягкое нёбо связано нервными окончаниями со многими участками органов образования речи. Хорошо иннервирована и слизистая оболочка. Любое движение мягкого нёба вверх является стимулятором для настройки всех органов голосообразования.
Важным органом, принимающим участие в речи, является нижняя челюсть. Благодаря ее активности и подвижности формируются гласные звуки.
В строении языка различают: кончик (заостренный передний конец), спинку (верхняя поверхность), края (по обеим сторонам), корень (задняя поверхность). При смыкании языка с твердым нёбом поток воздуха задерживается либо, прорываясь через затвор, образует звуки т-д-н. Если язык сближается с твердым нёбом, не смыкаясь с ним, возникает длительный шум благодаря трению о стенки суженной полости (звуки с-ш-з-ж). Задержки и замедления воздушного потока Могут создаваться смыканием губ, сближением губ, зубов (звуки б-п, м, в-ф). (Подробно об артикуляции губ и языка при произнесении гласных и согласных звуков смотрите в главе "Дикция".)
Важная часть речевого аппарата - резонаторно-пронзносительная система, которая объединяет ротовую и носоглоточную части речевого аппарата.
Дыхательная система дает энергию, необходимую для голосообразования.
Механизм вдоха и выдоха срабатывает "автоматически", но дыханием можно управлять и произвольно. "В результате систематического и частого повторения дыхательных упражнений они становятся условным раздражителем для коры головного мозга и могут изменить характер дыхания, его ритм, глубину и пр."[‡‡‡‡‡‡‡‡‡‡].
Дыхательный аппарат состоит из трахеи (дыхательного горла), бронхов с бронхиолами (бронхиального дерева) и легочной ткани, где в легочных пузырьках (альвеолах) совершается газообмен между воздухом и кровью. Трахея разветвляется на два бронха, которые образуют в легких мелкие веточки - бронхиолы, заканчивающиеся, как уже говорилось выше, альвеолами.
Таким образом, на двух главных ветвях бронхиального дерева (своим видом строе- ние легких очень напоминает дерево с ветвями и веточками) образуются два легких,

rh.nAbMl"l" rilfivwi ivvnj"V WvpeJiy w ы^шпи^ vu^Mu^viiiijnv rvw^jsstjr, WWIW ttHtJ»V(VVV
основание легких лежит на диафрагме; боковыми частями легкие прилегают к стенкам грудной полости.
Легкие покрыты двойной гладкой и скользкой оболочкой - плеврой. В легких нет собственной мускулатуры и, поскольку они прилегают к внутренним стенкам грудной клетки и к диафрагме, все движения стенок грудной полости и диафрагмы передаются легким.
При вдохе вдыхательные межреберные мышцы и диафрагма сокращаются. Расширение грудной клетки, опущение и уплощение купола диафрагмы влекут за собой расширение легких и заполнение их воздухом. Как только мышцы расслабляются, легкие сжимаются благодаря гладкой мускулатуре бронхов и эластичности тканей легких, но при полном дыхании и звучащем выдохе вдох и выдох совершаются произвольно при активном участии мышц вдыхателей и мышц выдыхателей. Диафрагма - мощная мышца вдоха, при ее участии заполняется воздухом нижняя, более широкая часть легких. Брюшной пресс является ее антагонистом - это очень сильная мышца выдоха. Сокращение мышечных пучков диафрагмы влечет за собой уплощение и снижение купола диафрагмы, увеличение объема грудной полости, расширение легких и заполнение их вдыхаемым воздухом.
При сокращении диафрагма надавливает на органы, находящиеся в брюшной полости, живот слегка выпячивается вперед. Хотя диафрагма является основной вдыхательной мышцей, ее роль во время звучащего вьшоха очень значительна. Выдох, как уже говорилось, обеспечивается мышцами брюшного пресса и межребернымн мышцами, которые поддаются волевому управлению.
По современным данным, основную энергию звучащего выдоха (певческого или речевого) дают основные мышцы-вьщыхатели грудной клетки и брюшного пресса, но диафрагма - мышца вдоха - и гладкие мышцы, заключенные в стенках бронхиального дерева, также активно участвуют в этом выдохе, противодействуя ему.
При помощи мышц-выдыхателей человек может регулировать струю выдыхаемого воздуха, подаваемую к голосовым складкам, может корректировать подсвязочное давление, необходимое для более сильного или легкого звучания.
Гладкие мышцы, о которых мы упоминаем, заключены в слизистой оболочке стенок бронхов. Они "регулируют просвет воздухоносных путей и тем самым дают возможность гибко менять объем воздуха, идущий к голосовым складкам". Гладкие мышцы не поддаются управлению, мы можем влиять на их работу только косвенным путем.
В жизни наблюдаются различные типы дыхания, при которых работают все мышцы вдоха и выдоха, только движения их разные. "Выбор" дыхания в жизни совершается и устанавливается в зависимости от физического воспитания с детских лет.
Процесс дыхания у человека состоит из трех взаимосвязанных этапов: внешнее дыхание, перенос газов кровью и тканевый обмен. Обмен между газами и кровью - сущность внешнего дыхания - происходит в легких и достигается сменой вдохов и выдохов.
В состоянии покоя человек делает 16-18 дыхательных циклов в минуту, вдыхая примерно 500 мм3 воздуха за один вдох. Этот объем воздуха называется дыхательным воздухом, Но при усиленном дыхании можно вдохнуть еще 1500 мм3. Этот объем называется дополнительным воздухом. Точно так же после обычного выдоха человек может
еще выдохнуть 1500 мм3. Этот объем называется резервным воздухом. Сумма перечисленных объемов воздуха (дыхательного, дополнительного и резервного) составляет 3500 мм3 н называется жизненной емкостью легких. Следует заметить, что занятия спортом, дыхательной гимнастикой, развитием голоса значительно повышают жизненную силу легких и благотворно действуют на здоровье человека.
Дыхание человека может быть различным в зависимости от обстановки. Во время сна оно ритмично и спокойно, в статичном положении может быть ритмичным и глубоким. И во время резких движений - поверхностным. Человек может со- Рис. S. Схематическое изображение трахеи и легких знательно управлять СВОИМ дыханием.
Главным регулятором дыхания является дыхательный центр, расположенный в продолговатом мозгу. Кроме того, в разных участках центральной нервной системы имеются отделы, которые определенным образом также регулируют дыхание. Большое значение имеют для актера условно-рефлекторные влияния на дыхательный процесс, т.е, волнение перед выступлением или даже мысленное представление о выступлении.
Таким образом, периферическая часть речевого аппарата состоит из трех систем: системы, образующей звук, резонаторно-артикуляционной и дыхательной систем. А работа всего аппарата достигается одновременно деятельностью всех трех систем периферического отдела под управлением и регуляцией центрального отдела речи - головного мозга с его проводящими путями.
В дальнейшем, осваивая дикцию и дыхание, мы будем на практике убеждаться в возможности и необходимости сознательного управления своим речевым аппаратом.



Loading...Loading...