Перегрузки и их действие на человека в разных условиях. Единицы силы Какую максимальную перегрузку выдерживает человек

В авиационной и космической медицине перегрузкой считается показатель величины ускорения, воздействующего на человека при его перемещении . Он представляет собой отношение равнодействующей перемещающих сил к массе тела человека.

Перегрузка измеряется в единицах, кратных весу тела в земных условиях. Для человека, находящегося на земной поверхности, перегрузка равна единице. К ней приспособлен человеческий организм, поэтому для людей она незаметна.

Если какому-либо телу внешняя сила сообщает ускорение 5 g, то перегрузка будет равна 5. Это значит, что вес тела в данных условиях увеличился в пять раз по сравнению с исходным .

При взлете обычного авиалайнера пассажиры в салоне испытывают перегрузку в 1,5 g. По международным нормам предельно допустимое значение перегрузок для гражданских самолетов составляет 2,5 g .

В момент раскрытия парашюта человек подвергается действию инерционных сил, вызывающих перегрузку, достигающую 4 g . При этом показатель перегрузки зависит от воздушной скорости. Для военных парашютистов он может составлять от 4,3 g при скорости 195 километров в час до 6,8 g при скорости 275 километров в час .

Реакция на перегрузки зависит от их величины, скорости нарастания и исходного состояния организма. Поэтому могут возникать как незначительные функциональные сдвиги (ощущение тяжести в теле, затруднение движений и т.п.), так и очень тяжелые состояния. К ним относятся полная потеря зрения, расстройство функций сердечно-сосудистой, дыхательной и нервной систем, а также потеря сознания и возникновение выраженных морфологических изменений в тканях.

С целью повышения устойчивости организма летчиков к ускорениям в полете применяют противоперегрузочные и высотно-компенсирующие костюмы, которые при перегрузках создают давление на область брюшной стенки и нижние конечности, что приводит к задержке оттока крови в нижнюю половину тела и улучшает кровоснабжение головного мозга.

Для повышения устойчивости к ускорениям проводятся тренировки на центрифуге, закаливание организма, дыхание кислородом под повышенным давлением.

При катапультировании, грубой посадке самолета или приземлении на парашюте возникают значительные по величине перегрузки , которые могут также вызвать органические изменения во внутренних органах и позвоночнике. Для повышения устойчивости к ним используются специальные кресла, имеющие углубленные заголовники, и фиксирующие тело ремнями, ограничителями смещения конечностей.

Перегрузкой также является проявление силы тяжести на борту космического судна. Если в земных условиях характеристикой силы тяжести является ускорение свободного падения тел, то на борту космического корабля в число характеристик перегрузки также входит ускорение свободного падения, равное по величине реактивному ускорению по противоположному ему направлению. Отношение этой величины к величине называется "коэффициентом перегрузки" или "перегрузкой".

На участке разгона ракеты-носителя перегрузка определяется равнодействующей негравитационных сил — силы тяги и силы аэродинамического сопротивления, которая состоит из силы лобового сопротивления, направленной противоположно скорости, и перпендикулярной к ней подъемной силы. Эта равнодействующая создает негравитационное ускорение, которое определяет перегрузку.

Ее коэффициент на участке разгона составляет несколько единиц .

Если космическая ракета в условиях Земли будет двигаться с ускорением под действием двигателей или испытывая сопротивление среды, то произойдет увеличение давления на опору из-за чего возникнет перегрузка. Если движение будет происходить с выключенными двигателями в пустоте, то давление на опору исчезнет и наступит состояние невесомости .

При старте космического корабля на космонавта , величина которого изменяется от 1 до 7 g. По статистике, космонавты редко испытывают перегрузки, превышающие 4 g.

Способность переносить перегрузки зависит от температуры окружающей среды, содержания кислорода во вдыхаемом воздухе, длительности пребывания космонавта в условиях невесомости до начала ускорения и т.д. Существуют и другие более сложные или менее уловимые факторы, влияние которых еще не до конца выяснено .

Под действием ускорения, превышающего 1 g, у космонавта могут появиться нарушения зрения. При ускорении 3 g в вертикальном направлении, которое длится более трех секунд, могут возникнуть серьезные нарушения периферического зрения. Поэтому в отсеках космического корабля необходимо увеличивать уровень освещенности.

При продольном ускорении у космонавта возникают зрительные иллюзии. Ему кажется, что предмет, на который он смотрит, смещается в направлении результирующего вектора ускорения и силы тяжести. При угловых ускорениях возникает кажущееся перемещение объекта зрения в плоскости вращения. Эта иллюзия называется окологиральной и является следствием воздействия перегрузок на органы внутреннего уха.

Многочисленные экспериментальные исследования, которые были начаты еще ученым Константином Циолковским, показали, что физиологическое воздействие перегрузки зависит не только от ее продолжительности, но и от положения тела. При вертикальном положении человека значительная часть крови смещается в нижнюю половину тела, что приводит к нарушению кровоснабжения головного мозга. Из-за увеличения своего веса внутренние органы смещаются вниз и вызывают сильное натяжение связок.

Чтобы ослабить действие высоких ускорений, космонавта помещают в космическом корабле таким образом, чтобы перегрузки были направлены по горизонтальной оси, от спины к груди. Такое положение обеспечивает эффективное кровоснабжение головного мозга космонавта при ускорениях до 10 g, а кратковременно даже до 25 g.

При возвращении космического корабля на Землю, когда он входит в плотные слои атмосферы, космонавт испытывает перегрузки торможения, то есть отрицательного ускорения. По интегральной величине торможение соответствует ускорению при старте.

Космический корабль, входящий в плотные слои атмосферы, ориентируют так, чтобы перегрузки торможения имели горизонтальное направление. Таким образом, их воздействие на космонавта сводится к минимуму, как и во время запуска корабля.

Материал подготовлен на основе информации РИА Новости и открытых источников

Сила, приложенная к телу, в системе единиц СИ измеряется в ньютонах (1 Н = 1 кг·м/с 2 ). В технических дисциплинах в нередко качестве единицы измерения силы традиционно используют килограмм-силу (1 кгс , 1 кГ ) и аналогичные единицы: грамм-силу (1 гс , 1 Г ), тонна-силу (1 тс , 1 Т ). 1 килограмм-сила определена как сила, сообщающая телу массой 1 кг нормальное ускорение, равное по определению 9,80665 м/с 2 (это ускорение приблизительно равно ускорению свободного падения). Таким образом, по второму закону Ньютона, 1 кгс = 1 кг · 9,80665 м/с 2 = 9,80665 Н . Можно сказать также, что тело массой 1 кг , покоящееся на опоре, имеет вес 1 кгс Часто ради краткости килограмм-силу называют просто «килограммом» (а тонна-силу, соответственно, «тонной»), что порождает порой путаницу у людей, не привыкших к использованию разных единиц.

Русская терминология, сложившаяся в ракетостроении, традиционно использует «килограммы» и «тонны» (точнее, килограмм-силы и тонна-силы) в качестве единиц тяги ракетных двигателей. Таким образом, когда говорят о ракетном двигателе с тягой 100 тонн, имеют в виду, что данный двигатель развивает тягу 10 5 кг · 9,80665 м/с 2 $\approx$ 10 6 Н .

Частая ошибка

Путая ньютоны и килограмм-силы, некоторые считают, что сила в 1 килограмм-силу сообщает телу массой 1 килограмм ускорение 1 м/с 2 , т. е. пишут ошибочное «равенство» 1 кгс / 1 кг = 1 м/с 2 . В то же время очевидно, что на самом деле 1 кгс / 1 кг = 9,80665 Н / 1 кг = 9,80665 м/с 2 — таким образом, допускается ошибка почти в 10 раз.

Пример

<…> Соответственно, сила которая давит на частицы в пределах средневзвешенного радиуса будет равна: 0,74 Гс/мм 2 · 0,00024 = 0,00018 Гс/мм 2 или 0,18 мГс/мм 2 . Соответственно, на среднюю частицу с поперечным сечением в 0,01 мм 2 будет давить сила в 0,0018 мГс.
Эта сила придаст частице ускорение, равное ее отношению к массе средней частицы: 0,0018 мГс / 0,0014 мГ = 1,3 м/сек 2 . <…>

(Выделение apollofacts .) Разумеется, сила величиной 0,0018 миллиграмм-сил сообщила бы частице массой 0,0014 миллиграмм ускорение почти в 10 раз больше того, что насчитал Мухин: 0,0018 миллиграмм-сил / 0,0014 миллиграмм = 0,0018 мг · 9,81 м/с 2 / 0,0014 мг $\approx$ 13 м/сек 2 . (Можно заметить, что с исправлением одной только этой ошибки насчитанная Мухиным глубина кратера, который якобы должен был бы образоваться под лунным модулем при посадке, сразу упадет с 1,9 м , которые требует Мухин, до 20 см ; однако весь остальной расчет настолько нелеп , что эта поправка не способна его исправить).

Вес тела

По определению, вес тела есть сила, с которой тело давит на опору или подвес. Вес тела, покоящегося на опоре или подвесе (т. е. неподижного относительно Земли или иного небесного тела) равен

(1)

\begin{align} \mathbf{W} = m \cdot \mathbf{g}, \end{align}

где $\mathbf{W}$ — вес тела, $m$ — масса тела, $\mathbf{g}$ — ускорение свободного падения в данной точке. На поверхности Земли ускорение свободного падения близко к нормальному ускорению (часто округляемому до 9,81 м/с 2 ). Тело массой 1 кг имеет вес $\approx$ 1 кг · 9,81 м/с 2 $\approx$ 1 кгс . На поверхности Луны ускорение свободного падения примерно в 6 раз меньше, чем у поверхности Земли (точнее, близко к 1,62 м/с 2 ). Таким образом, на Луне тела примерно в 6 раз легче, чем на Земле.

Частая ошибка

Путают вес тела и его массу. Масса тела не зависит от небесного тела, она постоянна (если пренебречь релятивистскими эффектами) и всегда равна одной и той же величине — и на Земле, и на Луне, и в невесомости

Пример

Пример

В газете «Дуэль », № 20, 2002 г. автор живописует страдания, которые должны испытывать астронавты лунного модуля при посадке на Луну, и настаивает на невозможности такой посадки :

Космонавты <…> испытывают длительную перегрузку, максимальное значение которой — 5. Перегрузка направлена вдоль позвоночника (самая опасная перегрузка). Спросите у военных летчиков, можно ли устоять в самолете в течение 8 мин. при пятикратной перегрузке да еще и управлять им. Представьте себе, что после трех дней пребывания в воде (три дня полета к Луне в невесомости) вы выбрались на сушу, вас поместили в Лунную кабину, а ваш вес стал 400 кг (перегрузка 5), комбинезон на вас — 140 кг, а рюкзак за спиной — 250 кг. Чтобы вы не упали, вас держат тросом, прикрепленным к поясу, 8 минут, а затем еще 1,5 мин. (никаких кресел, ложементов нет). Не подгибайте ноги, опирайтесь на подлокотники (руки должны быть на органах управления). Кровь отлила от головы? Глаза почти не видят? Не умирайте и не падайте в обморок <…>
уж совсем плохо заставлять космонавтов управлять посадкой в положении «стоя» при длительной 5-кратной перегрузке — это просто НЕВОЗМОЖНО.

Однако, как уже было показано, в начале спуска астронавты испытывали перегрузку $\approx$ 0,66 g — то есть заметно меньше их нормального земного веса (и никакого рюкзака за спиной у них не было — они были непосредственно подключены к системе жизнеобеспечения корабля). Перед посадкой тяга двигателя почти уравновешивала вес корабля на Луне, поэтому связанное с ней ускорение составляет $\approx$ 1/6 g — таким образом, в течение всей посадки они испытывали меньшую нагрузку, чем при простом стоянии на земле. По сути, одна из задач описыванной тросовая системы как раз и была в том, чтобы помочь астронавтам удержаться на ногах в условиях пониженного веса .

Самолёта. Перегрузка - безразмерная величина, однако часто единица перегрузки обозначается так же, как ускорение свободного падения , g . Перегрузка в 1 единицу (или 1g) означает прямолинейный полет, 0 - свободное падение или невесомость. Если самолёт выполняет вираж на постоянной высоте с креном 60 градусов, его конструкция испытывает перегрузку в 2 единицы.

Допустимое значение перегрузок для гражданских самолётов составляет 2,5. Обычный человек может выдерживать любые перегрузки до 15G около 3-5 сек без отключения, но большие перегрузки от 20-30G и более человек может выдерживать без отключения не более 1-2 сек и зависимости от размера перегрузки, например 50G=0.2 сек. Тренированные пилоты в антиперегрузочных костюмах могут переносить перегрузки от −3…−2 до +12 . Сопротивляемость к отрицательным, направленным вверх перегрузкам, значительно ниже. Обычно при 7-8 G в глазах «краснеет» и человек теряет сознание из-за прилива крови к голове.

Перегрузка - векторная величина, направленная в сторону изменения скорости. Для живого организма это принципиально. При перегрузке органы человека стремятся оставаться в прежнем состоянии (равномерного прямолинейного движения или покоя). При положительной перегрузке (голова-ноги) кровь уходит от головы в ноги. Желудок уходит вниз. При отрицательной-кровь подступает в голову. Желудок может вывернуться вместе с содержимым. Когда в неподвижную машину врезается другое авто - сидящий испытает перегрузку спина-грудь. Такая перегрузка переносится без особых трудностей. Космонавты во время взлёта переносят перегрузку лёжа. В этом положении вектор направлен грудь-спина, что позволяет выдержать несколько минут . Противоперегрузочных средств космонавты не применяют. Они представляют из себя корсет с надуваемыми шлангами, надувающимися от воздушной системы и удерживают наружную поверхность тела человека, немного препятствуя оттоку крови.

Примечания


Wikimedia Foundation . 2010 .

Смотреть что такое "Перегрузка (авиация)" в других словарях:

    Перегрузка: Перегрузка (авиация) отношение подъёмной силы к весу Перегрузка (техника) в ускоряющихся объектах Перегрузка (шахматы) шахматная ситуация, когда фигуры (фигура) не в состоянии справиться с поставленными задачами. Перегрузка… … Википедия

    1) П. в центре масс отношение n результирующей силы R (сумма тяги и аэродинамической силы, см. Аэродинамические силы и моменты) к произведению массы летательного аппарата m на ускорение свободного падения g: n = R/mg (при определении П. для… … Энциклопедия техники

    Наибольшее nэymax и наименьшее nэymin допустимые по прочности конструкции значения нормальной перегрузки ny. Значение Э. п. определяется на основании Норм прочности для различных расчётных случаев, например для манёвра, полёта при болтанке. По… … Энциклопедия техники

Все мы слышали эпические истории о людях, переживших попадание пули в голову, выживших после падения с 10-го этажа, или месяцами скитавшихся в море. Но достаточно поместить человека в любое место известной вселенной за исключением тонкого слоя пространства, простирающегося на пару миль над уровнем моря на Земле, или под ним, и гибель человека неминуема. Каким бы прочным и эластичным не казалось бы наше тело в некоторых ситуациях, в контексте космоса в целом, оно пугающе хрупко.

Многие границы, в рамках которых средний человек способен выжить, определены достаточно хорошо. Примером является известное "правило троек", определяющее, как долго мы способны обходиться без воздуха, воды и пищи (примерно, три минуты, три дня, и три недели, соответственно). Другие пределы более спорны, поскольку люди очень редко проверяют их (или не проверяют вовсе). Например, как долго вы можете бодрствовать, прежде чем умрете? На какую высоту вы можете подняться, до того, как задохнетесь? Какое ускорение способно выдержать ваше тело, прежде чем разорвется на части?

Определить границы, в рамках которых мы живем, помогли определить эксперименты, проводившиеся в течение десятилетий. Некоторые из них были целенаправленными, некоторые - случайными.

Как долго мы можем оставаться в бодрствующем состоянии?

Известно, что летчики ВВС, после трех-четырех дней бодрствования впадали в настолько неуправляемое состояние, что разбивали свои самолеты (засыпая за штурвалом). Даже одна ночь без сна влияет на способности водителя так же, как и опьянение. Абсолютный предел добровольного сопротивления сну, составляет 264 часа (около 11 дней). Этот рекорд установил 17-летний Рэнди Гарднер, для ярмарки научных проектов учащихся старших классов в 1965 году. Перед тем, как он заснул в 11-й день, он, фактически представляя собой растение с открытыми глазами.

Но через какое время он бы умер?

В июне этого года 26-летнй китаец умер через 11 дней, проведенных без сна в попытке просмотреть все игры Европейского Чемпионата. При этом он потреблял алкоголь и курил, что затрудняет точно установить причину смерти. Но только по причине недостатка сна, определенно, не умер ни один человек. И по очевидным этическим причинам ученые не могут определить этот срок в лабораторных условиях.

Но они смогли сделать это на крысах. В 1999 году исследователи сна из Университета Чикаго поместили крыс на вращающийся диск, расположенный над бассейном с водой. Они непрерывно записывали поведение крыс при помощи компьютерной программы, способной распознать наступление сна. Когда крыса начинала засыпать, диск неожиданно поворачивался, пробуждая ее, отбрасывая ее к стенке и угрожая сбросить ее в воду. Крысы, как правило, умирали через две недели такого обращения. Перед смертью грызуны демонстрировали симптомы гиперметаболизма, состояния, в котором скорость метаболизма организма в состоянии покоя увеличивается настолько, что сжигаются все излишние калории, даже при полной неподвижности тела. Гиперметаболизм ассоциируется с недостатком сна.

Как много радиации мы способны выдержать?

Радиация представляет собой долговременную опасность, так как она вызывает мутации ДНК, меняя генетический код таким образом, что это приводит к раковому росту клеток. Но какая доза радиации убьет вас немедленно? По словам Питера Каракаппа, инженера-ядерщика и специалиста по радиационной безопасности в Политехническом Институте Ренслера, доза в 5-6 зивертов (Sv) в течение нескольких минут разрушит слишком много клеток, чтобы организм смог с этим справиться. "Чем дольше период накопления дозы, тем выше шансы на выживание, так как организм в это время пытается провести самовосстановление", - пояснил Каракаппа.

Для сравнения, некоторые рабочие на японской атомной электростанции Фукусима получили от 0.4 до 1 Sv радиации в течение часа, во время противостояния аварии в марте прошлого года. Хотя они и выжили, риск заболевания раком у них значительно повышен, говорят ученые.

Даже если удастся избежать аварий на АЭС и взрывов сверхновых, естественный радиационный фон на Земле (от таких источников, как уран в почве, космические лучи и медицинские устройства) увеличивают наши шансы заболеть раком в любой год на 0.025 процента, говорит Каракаппа. Это устанавливает несколько странный предел продолжительности жизни человека.

"Средний человек... получая среднюю дозу фоновой радиации каждый год в течение 4000 лет, в отсутствии других факторов, неизбежно получит рак, вызванный радиацией", - говорит Каракаппа. Другими словами, даже если мы сможем победить все болезни, и отключить генетические команды, которые управляют процессом старения, мы все равно не будем жить более 4000 лет.

Какое ускорение мы можем выдержать?

Грудная клетка защищает наше сердце от сильных ударов, но она не является надежной защитой от рывков, которые стали сегодня возможны благодаря развитию технологии. Какое ускорение способен выдержать этот наш орган?

НАСА и военные исследователи проведи ряд испытаний в попытке ответить на этот вопрос. Целью этих испытаний была безопасность конструкций космических и воздушных летательных аппаратов. (Мы же не хотим, чтобы астронавты теряли сознание при взлете ракеты.) Горизонтальное ускорение - рывок в бок - оказывает отрицательное влияние на наши внутренности, из-за асимметричности воздействующих сил. Согласно недавно опубликованной в журнале "Popular Science" статье, горизонтальное ускорение величиной в 14 g способно оторвать наши органы друг от друга. Ускорение вдоль тела в направлении головы может сместить всю кровь к ногам. Такое вертикальное ускорение величиной от 4 до 8 g лишит вас сознания. (1 g - это та сила тяжести, которую мы ощущаем на земной поверхности, в 14 g - эта сила тяжести на планете, в 14 раз массивнее нашей.)

Ускорение, направленное вперед или назад, является наиболее благоприятным для тела, так как при этом и голова и сердце ускоряются одинаково. Проведенные военными в 1940-х и в 1950-х годах эксперименты по "торможению человека" (в которые, в сущности, использовались ракетные салазки, двигающиеся по всей базе ВВС "Edwards" в Калифорнии), показали, что мы можем тормозить с ускорением 45 g, и при этом остаться в живых, чтобы рассказать об этом. При таком торможении, двигаясь со скоростью выше 1000 км в час, вы можете остановиться за доли секунды, проехав несколько сотен футов. При торможении в 50 g, мы, по оценкам специалистов, мы, вероятно, превратимся в мешок с отдельными органами.

Какие изменения окружающей среды мы способны выдержать?

Разные люди способны выдержать различные изменения привычных атмосферных условий, независимо от того, будь то изменение температуры, давления, или содержания кислорода в воздухе. Пределы выживания также связаны с тем, насколько медленно происходят изменения окружающей среды, поскольку наш организм способен постепенно настраивать потребление кислорода, и изменять метаболизм в ответ на экстремальные условия. Но, тем не менее, можно приблизительно оценить, что мы способны выдержать.

Большинство людей начинает страдать от перегрева через 10 минут нахождения в крайне влажной и жаркой среде (60 градусов по Цельсию). Установить границы смерти от охлаждения сложнее. Человек обычно умирает, когда температура его тела падает до 21 градуса по Цельсию. Но сколько времени для этого требуется, зависит от того, насколько человек "привычен к холоду", и проявился ли загадочная, латентная форма "зимней спячки", которая, как известно, иногда имеет место.

Границы выживания гораздо лучше установлены для долговременного комфорта. По данным отчета НАСА за 1958 год, люди могут неопределенного долго жить в окружающей среде, температура которой находится в пределах от 4 до 35 градусов по Цельсию, при условии, что последняя температура приходится на относительную влажность не более 50 процентов. При меньшей влажности максимальная температура увеличивается, так как меньшее количество влаги в воздухе облегчает процесс потения, и тем самым, охлаждения тела.

Как можно судить из научно-фантастических фильмов, в которых шлем астронавта открывается вне космического корабля, мы не способны долго продержаться при очень низких уровнях давления или кислорода. При нормальном атмосферном давлении, воздух содержит 21 процент кислорода. Мы умрем от удушья, если концентрация кислорода опустится ниже 11 процентов. Слишком большая концентрация кислорода также убивает, постепенно вызывая воспаление легких в течение нескольких дней.

Мы теряем сознание, когда давление падает ниже 57 процентов атмосферного давления, что соответствует подъему на высоту 4500 метра. Альпинисты способны подниматься на более высокие горы, поскольку их организм постепенно приспосабливается к снижению количества кислорода, но никто не сможет прожить достаточно долго без кислородных баллонов на высоте более 7900 метров.

Это около 8 километров вверх. А до границы известной вселенной остается еще почти 46 миллиардов световых лет.

Наталия Волховер (Natalie Wolchover)

"Маленьките загадки жизни" (Life"s Little Mysteries)

август 2012

Перевод: Гусев Александр Владимирович

Перегрузкой называется отношение равнодействующей всех сил (кроме веса), действующих на самолет, к весу самолета.

В связанной системе координат определены перегрузки:

- продольная перегрузка; - нормальная перегрузка; nz - боковая перегрузка.

Полная перегрузка определяется по формуле

Продольная перегрузка nх возникает при изменении тяги двигателя и лобового сопротивления.

Если тяга двигателя больше лобового сопротивления, то перегрузка положительная. Если же величина лобового сопротивления больше силы тяги двигателя, то перегрузка отрицательная.

Продольная перегрузка определяется по формуле

Боковая перегрузка nz возникает при полете самолета со скольжением. Но по величине боковая аэродинамическая сила Z очень мала. Поэтому в расчетах боковую перегрузку принимают равной нулю. Боковая перегрузка определяется по формуле

Выполнение фигур пилотажа в основном сопровождается возникновением больших нормальных перегрузок.

Нормальной перегрузкой nу называется отношение подъемной силы к весу самолета и определяется по формуле

Нормальная перегрузка, как видно из формулы (11.5), создается подъемной силой. В горизонтальном полете при спокойной атмосфере подъемная сила равна весу самолета, следовательно, перегрузка будет равна единице:

Рис. 6 Действие центробежной силы инерции на летчика а - при резком увеличении угла атаки, б - при резком уменьшении угла атаки

В криволинейном полете, когда подъемная сила становится больше веса самолета, перегрузка будет больше единицы.

При движении самолета по криволинейной траектории центростремительной силой является, как уже говорилось, подъемная сила, т. е. давление воздуха на крылья. При этом величине центростремительной силы всегда сопутствует равная, но противоположная по направлению центробежная сила инерции, которая выражается силой давления крыльев на воздух. Причем центробежная сила действует подобно весу (массе), а так как она всегда равна центростремительной силе, то при увеличении последней возрастает во столько же раз. Таким образом, аэродинамическая перегрузка подобна увеличению веса самолета (летчика).

При появлении перегрузки летчику кажется, что его тело стало тяжелее.

Нормальная перегрузка делится на положительную и отрицательную. Когда перегрузка прижимает летчика к сиденью, то эта перегрузкаположительная, если же отделяет его от сиденья и удерживает на привязных ремнях -отрицательная (Рис. 6).

В первом случае кровь будет отливать от головы к ногам, во втором случае - приливать к голове.

Как уже говорилось, увеличение подъемной силы в криволинейном движении равносильно увеличению веса самолета на ту же величину, тогда

(11.6)

(11.7)

где n ур - располагаемая перегрузка.

Из формулы (11.7) видно, что величина располагаемой перегрузки определяется запасом коэффициентов подъемной силы (запасов углов атаки) от потребного для горизонтального полета до его безопасного значения (Су ТР или Су КР).

Максимально возможная нормальная перегрузка может быть получена тогда, когда в полете на данной скорости и высоте полета будут полностью использованы возможности самолета по созданию подъемной силы. Эту перегрузку можно получить в том случае, когда самолет резко (без заметного уменьшения скорости полета) выводится на С у =С у макс:

(11.8)

Однако до такой перегрузки нежелательно доводить самолет, так как произойдет потеря устойчивости и срыв в штопор или штопорное вращение. По этой причине не рекомендуется на больших скоростях полета, особенно при выходе из пикирования, отклонять резко ручку управления на себя. Поэтому максимально возможную или располагаемую перегрузку принимают меньшей по величине, чтобы предупредить выход самолета на режим тряски. Формула определения этой перегрузки имеет вид

(11.9)

Для самолетов Як-52 и Як-55 графические зависимости располагаемых перегрузок от скорости полета показаны на Рис. 7, Рис. 8. При выполнении полетов на самолетах Як-52 и Як-55 располагаемая нормальная перегрузка в основном ограничена по прочностным характеристикам самолета.

Максимально допустимая эксплуатационная перегрузка для самолета Як-52:

с колесным шасси:

положительная +7;

отрицательная -5;

с лыжным шасси:

положительная +5;

отрицательная -3.

Максимально допустимая эксплуатационная перегрузка для самолета Як-55:

в тренировочном варианте:

положительная +9;

отрицательная -6;

в перегоночном варианте:

положительная +5;

отрицательная -3.

Превышение в полете этих перегрузок запрещается, так как могут появиться остаточные деформации в конструкции самолета.

При выполнении установившихся криволинейных маневров перегрузка зависит от запаса тяги силовой установки. Запас тяги определяется из условия сохранения заданной скорости в течение всего маневра.

Предельной перегрузкой по располагаемой тягеnу ПРЕД называется наибольшая перегрузка, при которой тяга силовой установки еще уравновешивает лобовое сопротивление. Она определяется по формуле

(11.10)

Предельная по располагаемой тяге перегрузка зависит от скорости и высоты полета, так как вышеуказанные факторы влияют на располагаемую тягу Рр и от скорости аэродинамическое качество К. Для расчета зависимости n у ПРЕД V необходимо иметь кривые Рр (V)для различных высот и сетку поляр.

Для каждого значения скорости с кривой Рр (V) снимают значения располагаемой тяги, определяют с поляры для соответствующей скорости V снимают величину коэффициента Су и рассчитывают по формуле (11.10).

При маневрировании в горизонтальной плоскости с перегрузкой меньше располагаемой, но более предельной по тяге самолет будет терять скорость или высоту полета.



Loading...Loading...