Тепловой шок. Прорыв в медицине: в России создан универсальный препарат против рака Шапероны участвуют в поддрежании белкового гомеостаза

Александр Сапожников не согласен с таким теоретическим обоснованием механизма действия лекарства. По его словам, HSP70 может работать по другой схеме, которую только предстоит изучить, однако факт остается фактом - на клеточных культурах и ряде опухолей в двух линиях крыс, которым были привиты «человеческие» опухолевые клетки, белок действительно показывает активность.

По словам авторов работы, температура, при которой работают с HSP70 на культурах клеток, составляет 43°C, и она слишком высока для живых организмов, однако там, судя по всему, включаются иные механизмы, которые также только предстоит понять. Это касается и действия экзогенного неклеточного белка теплового шока внутри организма. «У каждого из нас в кровотоке присутствует достаточно высокий уровень HSP70 - до 900 нанограммов на миллилитр. Мы вводили его в животное и пытались смотреть, что с белком происходит дальше. В течение 40 минут мы видели следы HSP70 в крови, а потом он пропал. Есть мнение, что белок распадается, но мы так не думаем».

Впечатляющие результаты в ожидании проверки

Ирина Гужова рассказала и о дальнейших испытаниях препарата: «Мы испытывали этот механизм на мышиной меланоме B16, которая растет подкожно, и использовали в виде геля, наносимого на поверхность кожи. Результат получился впечатляющий: выживаемость мышей была гораздо выше, чем у контрольной группы, которую лечили гелем без действующего вещества или не лечили вообще. Разница была примерно в десять дней. Для мышей и данного типа опухоли это очень хорошая отсрочка. Подобные результаты были показаны и на крысиной глиоме C6 (это опухоль, которая растет непосредственно в мозге).

Животные, которых лечили однократной инъекцией в мозг, получали дополнительно десять дней жизни, а животные, которым вводили белок постоянно в течение трех дней с помощью помпы, эта продолжительность увеличивалась еще на десять дней, так как опухоль росла медленнее. Мы показали, что если обеднить популяцию Т-лимфоцитов от мыши, которая имела опухоль, и убрать уже «наученные» NK-клетки или CD8-положительные лимфоциты, то они не будут узнавать опухоль так хорошо. Можно сделать вывод, что основная функция HSP70 в этом процессе - активация специфического иммунитета».

Эти данные побудили ученых провести ограниченное исследование в рамках клиники имени Поленова (НИИ Нейрохирургии в Санкт-Петербурге). «В это время в нашем коллективе был нейрохирург Максим Шевцов, который одновременно с аспирантурой Бориса Александровича (Маргулиса, - прим. сайт) проходил ординатуру в этом НИИ. Он убедил своего руководителя, профессора Хачатуряна, испытать этот препарат. По тогдашнему законодательству достаточно было решения ученого совета и информированного согласия пациентов, и нам было выделено 25 больных. У них у всех были различные опухоли мозга, и они все получали то, что им полагалось по страховке, но плюс после хирургического удаления опухоли Максим вводил в операционное ложе раствор HSP70.

Проблема в том, что опухоли мозга удалить полностью сложно. Всегда остаются маленькие кусочки, которые опасно удалять, потому что вместе с ними можно удалить личность, и эти кусочки дают рецидивы. Но результаты оказались совершенно потрясающими: после операции у больных увеличивалось количество клеток специфического иммунитета, понижалось количество проопухолевых («перешедших на сторону опухоли») Т-лимфоцитов и уменьшалось количество интерлейкина-10 (информационной молекулы иммунной системы).

Исследование было только пилотное, не рандомизированное, группы контроля тоже не было, и проводилось оно в 2011 году. В том же году был принят закон, согласно которому такие испытания запрещены, и их пришлось прекратить, едва начав. У нас осталось 12 прооперированных пациентов. Кто знаком с клинической частью исследований, тот имеет представление о том, насколько сложно отследить судьбы пациентов после того, как каждый из них покидает клинику. Поэтому мы знаем только о восьми, которые остались доступны для контакта, и все они живы до сих пор. На начало осени прошлого года они были вполне здоровы, и те, кто продолжал учиться, осенью пошли в школу, хотя средний прогноз продолжительности жизни с обнаруженной глиомой - 14 месяцев».

Сейчас, по словам докладчиков, доклинические испытания подходят к концу, и препарату необходима многоступенчатая проверка на пациентах, которая займет несколько лет (вот почему в статье «Известий» фигурировал такой неправдоподобно короткий срок до выхода препарата на рынок - 3-4 года).

Александр Сапожников также подчеркнул важность клинических испытаний: «Привитая мышам опухоль и человеческая - это небо и земля. Препарат может работать на этой опухоли, но быть неэффективным ни на обычной опухоли мыши, ни на человеческой. Успокойте своих коллег, лекарства от всех болезней сразу не бывает».

Так считают и сами исследователи. «На данных стадиях все работает (и очень хорошо), но, конечно же, это не то лекарство, которое поднимает Лазаря, - заявляет Ирина Гужова, - однако оно достаточно эффективно и достойно того, чтобы пройти клинические испытания. И мы надеемся, что это случится».

Просто космос

У читателя может возникнуть резонный вопрос: откуда вообще взялся космос? Ирина Гужова поясняет: «Дело в том, что испытания проходили на базе Института особо чистых препаратов, у сотрудников которого хороший опыт в регистрации патентов и написании бумаг, поэтому мы это дело отдали им. Одновременно они начали производство этого белка, а мы делали опыты на животных. Но в процессе к ним обратился представитель Роскосмоса и спросил, а нет ли у нас какого-то незакристаллизованного белка, чтобы закристаллизовать в космосе, на орбите. И им отдали HSP70, кристаллы пытались вырастить на орбите, но ничего не получилось».

Проблема оказалась в строении белка. Очень подвижная часть в структуре белка мешала кристаллизации, поэтому его стали пытаться закристаллизовать по кусочкам, связывать подвижную часть специальной молекулой, чтобы она его «держала». Пытаются до сих пор. «Отсюда выросла эта история про клетки, которые растут в космосе и лечат всех от рака», - комментирует Ирина Гужова.

Она также сообщила, что для испытаний в космосе и на мышах белок подвергли очень высокой степени очистки - около 99%. Что касается сомнений, что активирует иммунитет не шаперон, а липополисахарид (ЛПС) - компонент клеточной стенки бактерий, в которых нарабатывают этот белок, - такая вероятность невелика. Хотя ЛПС «прилипает» к HSP очень сильно, и очистить от самых мизерных его примесей белок довольно трудно. Ученые ставят дополнительные контроли, чтобы показать, что не он, а именно шаперон - причина эффекта препарата. Например, препарат могут кипятить, что не влияет на ЛПС, но разрушает структуру белка. Тогда его свойства HSP теряются, и препарат перестает работать, чего бы не произошло, если бы в нем действовал в основном бактериальный ЛПС.

Кроме того, исследователи сравнивали эффект введения компонентов клеточной стенки бактерий с эффектом от HSP70, и эти сравнения явно были в пользу последнего.

«Не говорили глупостей. И чего? – Ноль эмоций!»

Ирина сообщает, что побочных реакций в ходе испытаний ученые пока не обнаружили, но они могут быть отсроченными. «Я считаю, что исследователь в первую очередь должен на себе все попробовать сам, и прошла два курса шаперонотерапии. Никаких побочных эффектов не было, наоборот, казалось, что проходят мелкие болячки и крылья вырастают за спиной».

«С другой стороны, все, что было в СМИ, - настоящее безобразие, - отмечает исследователь. - Но, как говорится, не было бы счастья, да несчастье помогло: уже сейчас в Институт особо чистых препаратов поступают звонки с предложениями помочь с клиническими испытаниями. Мы выступали на конференциях и в разных более скромных СМИ, говорили о том же самом, но выверяли слова, не говорили глупостей. И чего? - Ноль эмоций! А тут пронеслась такая вот муть по экранам, и пожалуйста! Такое интересное общество, такая интересная страна».

Впрочем, согласно источникам сайт, интервью, с которого все началось, Симбирцев дал вынужденно. предложили дать интервью, чтобы стимулировать интерес к проблемам Института и привлечь дополнительное финансирование на клинические испытания. Кроме того, ходят слухи о возможной утрате институтом юридического лица вследствие происходящих по всей стране слияний научных организаций. Видимо, ученый оказался не готов подробно и популярно рассказать газете о происходящем. «В этот раз все, что могло быть понято неправильно, было понято неправильно», - замечает источник.

В результате ситуация все больше становится похожа на небезызвестную басню, когда Роскосмос и госструктуры, раздающие гранты, рвутся в облака, ожидая немедленных результатов от фундаментальной науки, рак пятится назад, журналисты разливают структурированную воду… А российская наука в очередной раз оказывается в незавидном положении, вынужденная оправдываться за преступления, которых не совершала.

07 Июня 2010

Как выглядит молекулярный термометр? Этот вопрос намного сложнее, чем может показаться на первый взгляд. Судя по всему, используемый клеткой «термометр», играющий одну из важнейших ролей в поддержании стабильности протеома клетки, представляет собой систему факторов транскрипции и специализированных белков – шаперонов, в т.ч. белков теплового шока, реагирующих не только на повышение температуры (это всего лишь первая из открытых функций этого класса белков), но и на другие повреждающие клетку физиологические воздействия.

Шапероны (chaperones) – класс белков, основная функция которых – восстановление правильной третичной структуры повреждённых белков, а также образование и диссоциация белковых комплексов.

Система шаперонов реагирует на возникающие в процессе жизнедеятельности клетки повреждения и обеспечивает правильное прохождение фолдинга – сворачивания аминокислотных цепочек, сходящих с рибосомальной «линии сборки», в трехмерные структуры. Несмотря на очевидность исключительной важности этой системы, долгое время никто из занимающихся ее изучением специалистов даже не предполагал, что этот молекулярный термометр одновременно является и своего рода «источником молодости» клетки, а его изучение предоставляет возможность взглянуть на ряд заболеваний с новой, неизвестной ранее стороны.

Белки, являющиеся основным продуктом функционирования генома, не только формируют структуру, но и обеспечивают работу всех клеток, тканей и органов. Отсутствие сбоев в процессах синтеза аминокислотных последовательностей; формирования, сборки и транспортировки белковых молекул, а также выведения поврежденных белков является важнейшим аспектом поддержания здоровья как отдельных клеток, так и всего организма. Белки также являются материалом, необходимым для формирования и эффективного функционирования «молекулярных машин», обеспечивающих процессы биосинтеза, – процесса, критичного для обеспечения долголетия организма. Причиной многих проблем являются нарушения фундаментального процесса фолдинга белков. Нарушения работы «ОТК», представленного белками теплового шока и шаперонами, приводят к появлению и накоплению ошибок. Эти ошибки нарушают работу молекулярных механизмов, что может приводить к развитию различных заболеваний. Возникновение таких ошибок в нейронах чревато поистине ужасными последствиями, проявляющимися развитием таких нейродегенеративных заболеваний, как рассеянный склероз, а также болезней Гентингтона, Паркинсона и Альцгеймера.

Открытая в 1962 году Феруччио Ритосса (Ferruccio Ritossa) реакция теплового шока описана как индуцированное повышением температуры изменение организации плотно упакованных хромосом в клетках слюнных желез мух-дрозофил, ведущее к образованию так называемых «вздутий». Такие вздутия, выглядящие под микроскопом как хлопковые шарики, зажатые между плотно упакованными участками хромосом, появляются также при воздействии динитрофенола, этанола и солей салициловой кислоты.

Оказалось, что вздутия хромосом являются новыми регионами транскрипции, начинающими синтез новых информационных РНК в течение нескольких минут после своего возникновения. Белковые продукты этого процесса в настоящее время широко известны как белки теплового шока, наиболее изученными из которых являются Hsp90 и Hsp70. Белки этого семейства регулируют сворачивание аминокислотных цепочек и предотвращают появление неправильно сформированных белковых молекул в клетках всех живых организмов.

В конце 1970-х и в начале 1980-х годов с помощью оригинального приема клеточной биохимии, позволяющего увеличить количество информационных РНК, кодирующих последовательности соответствующих белков, ученым удалось клонировать первые гены теплового шока мухи-дрозофилы. На тот момент специалисты придерживались мнения, что реакция теплового шока характерна исключительно для организма дрозофил. На этом этапе Ричард Моримото и сделал своей первый вклад в изучение белков теплового шока. Он собрал обширную коллекцию ДНК многоклеточных организмов и с помощью метода саузерн-блоттинга продемонстрировал, что все они содержат практически идентичные по структуре аналоги гена Hsp70. Примерно в то же время Джим Бардуэлл (Jim Bardwell) и Бетти Крейг (Betty Craig) из университета Висконсина в Мэдисоне идентифицировали в геноме кишечной палочки (Escherichia coli) ген dnaK, также являющийся аналогом Hsp70. Результатом дальнейшего детального изучения этого вопроса стало понимание того, что гены теплового шока в практически неизменившимся в ходе эволюции виде представлены в геномах представителей всех пяти царств живого мира.

Следующим достижением в цепи последовавших за этим событий стала идентификация семейства факторов транскрипции, управляющих запуском первого этапа реакции теплового шока. В этой работе приняло участие несколько исследовательских групп из разных университетов, в том числе и группа Моримото. Ученые продемонстрировали, что повышение температуры клетки вызывает изменение формы этих факторов транскрипции, что способствует их связыванию с промоторами генов теплового шока, инициирующими синтез белков теплового шока. Более того, оказалось, что в отличие от дрожжей, мух-дрозофил и нематод Caenorhabditis elegans, имеющих только один фактор транскрипции генов теплового шока, в клетках человека имеется целых три таких фактора. Такая сложная схема регуляции экспрессии исследуемых генов навела ученых на мысль об их многофункциональности, требующей дополнительного изучения.

Дальнейшие исследования показали, что белки теплового шока сами регулируют функционирование фактора транскрипции, инициирующего их продукцию в ядрах клеток. Очевидным стало также то, что белки теплового шока выполняют функции молекулярных шаперонов – управляют сворачиванием аминокислотных цепочек, обеспечивая формирование правильных пространственных конформаций белковых молекул, а также выявляют и устраняют сбои в этом процессе. Таким образом, оказалось, что клеточный термометр не только измеряет температуру, но и осуществляет мониторинг появления в клетке неправильно сформированных и поврежденных белков. Тепловой шок и другие стрессорные воздействия наполняют клетку аномальными белками, на что шапероны реагируют связыванием этих белков и высвобождением фактора транскрипции теплового шока-1 (Hsf1). Молекулы этого фактора самопроизвольно формируют тримеры (комплексы из трех молекул), связывающиеся с соответствующими регионами генома, в свою очередь запускающими синтез белков теплового шока. Следующее за этим повышение концентрации белков теплового шока до необходимого уровня по принципу обратной связи подавляет транскрипционную активность фактора транскрипции Hsf1.

Изучение функционирования белков теплового шока на линиях клеток сильно ограничивало возможности исследователей, так как не обеспечивало получения информации о сопровождающих его изменениях, происходящих во всем организме. Поэтому примерно в 1999 году Моримото и его коллеги решили перейти на новую модель – круглых червей C.elegans. Их особенно вдохновила опубликованная в 1994 году работа Макса Перутца (Max Perutz), установившего, что причиной серьезного нейродегенеративного заболевания – болезни Гентингтона – является особая мутация гена, получившего название гентингтин. Эта мутация приводит к синтезу варианта белка, содержащего дополнительный фрагмент из длинной цепочки аминокислоты глутамина, по всей видимости, нарушающий нормальный процесс фолдинга. Агрегация таких аномальных белковых молекул в нейронах и приводит к развитию болезни Гентингтона. Исследователи предположили, что изучение белков, формирование молекул которых нарушено из-за экспрессии полиглутамина или сходных причин, поможет разобраться в работе молекулярного термометра.

В процессе работы над созданием животных моделей экспрессии в нейронах и мышечных клетках белков, содержащих избыточные полиглутаминовые последовательности, исследователи установили, что степень агрегации и ассоциированной с ней токсичности таких белков пропорциональна их длине и возрасту организма. Это навело их на мысль, что подавление опосредуемого инсулином сигнального механизма, регулирующего продолжительность жизни организма, может повлиять на процесс агрегации полиглутаминсодержащих белков. Результаты дальнейших исследований подтвердили существование предполагаемой взаимосвязи, а также продемонстрировали, что влияние функционирования фактора транскрипции Hsf1 на продолжительность жизни организма опосредовано инсулинзависимым сигнальным механизмом. Эти наблюдения сделали очевидным тот факт, что реакция теплового шока одинаково важна как для выживания организма в условиях острого стресса, так и для постоянной нейтрализации токсичного действия белков, отрицательно сказывающегося на функционировании и продолжительности жизни клеток.

Использование живых организмов в качестве экспериментальной модели позволило ученым перевести исследования на качественно новый уровень. Они стали обращать внимание на механизмы, посредством которых организм воспринимает и интегрирует поступающую извне информацию на молекулярном уровне. Если стресс влияет на процесс старения, логично предположить, что белки теплового шока, регистрирующие появление и предотвращающие накопление в клетке поврежденных белков, вполне способны замедлять развитие эффектов старения.

То, что для многих заболеваний, ассоциированных с накоплением склонных к агрегации белков, характерны симптомы старения, а все болезни, в основе которых лежат нарушения формирования белковых молекул, ассоциированы со старением, наводит на мысль, что чувствительные к температуре метастабильные белки теряют свою функциональность по мере старения организма. И действительно, эксперименты на C.elegans показали, что функционирование механизма, запускаемого фактором транскрипции Hsf1, также как и других защитных систем клетки, начинает угасать практически сразу после достижения организмом зрелости. Однако оказалось, что активация фактора транскрипции Hsf1 на ранних этапах развития может препятствовать нарушению стабильности белковых молекул (протеостаза).

Возможно, это наблюдение, предполагающее весьма интригующие возможности, не распространяется на более сложные многоклеточные организмы, однако все живое состоит из белков, поэтому полученные в экспериментах на круглых червях результаты с большой степенью вероятности могут помочь ученым разобраться в механизмах старения человека.

Однако это еще не конец истории. Результаты работы, недавно проведенной под руководством профессора Моримото, указывают на существование механизмов корректировки протеостаза, не требующих непосредственного вмешательства в функционирование фактора транскрипции Hsf1. Исследователи решили провести классический генетический скрининг мутантов C.elegans, демонстрирующих нарушения процесса формирования белковых молекул в мышечных клетках. В результате они установили, что влияющая на этот процесс мутация находится в гене фактора транскрипции, контролирующего продукцию нейротрансмиттера гамма-аминомасляной кислоты (ГАМК). ГАМК управляет функционированием нейротрансмиттеров возбуждения и регулирует мышечный тонус. Интересен тот факт, что любое нарушение стабильности работы опосредуемых ГАМК механизмов ведет к гиперстимуляции, заставляющей постсинаптические мышечные клетки реагировать на несуществующий стресс, что приводит к нарушению процессов формирования белковых молекул. Другими словами, оказалось, что активность нейронов может влиять на функционирование молекулярных термометров других клеток организма, что еще более усложнило вырисовывающуюся картину.

Если этот механизм распространяется и на человека, то, возможно, ученым удастся разработать метод воздействия на нейроны, приводящий к активации белков теплового шока в клетках скелетных мышц и способствующий устранению симптомов мышечной дистрофии и других заболеваний двигательных нейронов. Возможно, манипуляции над этим механизмов позволят контролировать и процесс накопления поврежденных белков, ассоциированный со старением. Однако, к сожалению, не все так просто, как хотелось бы. В организме C.elegans развитием реакции теплового шока во всех взрослых соматических клетках управляет одна пара нейронов. Судя по всему, активность этих нейронов и механизм обратной связи позволяют клеткам и тканям активировать белки теплового шока согласно их конкретным нуждам. Дело в том, что для различных тканей характерна разная активность биосинтеза белков, а также отличающиеся выраженность и характер внешних воздействий. Поэтому универсальный подход к управлению реакцией теплового шока в принципе невозможен.

Вооружившись результатами своей работы и многообещающими идеями, Моримото и несколько из его коллег основали компанию Proteostasis Therapeutics, целью работы которой является идентификация терапевтических малых молекул, способных корректировать патологические эффекты накопления неправильно сформированных белковых молекул. Этот подход связан с достаточно большой долей риска, так как уровень белков теплового шока повышается при многих злокачественных заболеваниях. Однако Моримото и его соратники считают, что разрабатываемое ими направление обладает слишком большим потенциалом, чтобы его игнорировать.

Об авторе
Профессор Ричард Моримото (Richard Morimoto), после защиты докторской диссертации полностью посвятил свою работу изучению функционирования белков теплового шока и их роли в старении организма. Первые шаги в выбранном им направлении Моримото сделал в Гарвардском университете под руководством доктора Мэтта Месельсона (Matt Meselson). В настоящее время Ричард Моримото является директором института биомедицинских исследований имени Райса, входящего в структуру Северо-Западного университета в Эванстоне, штат Иллинойс, а также одним из основателей компании Proteostasis Therapeutics (Кембридж, штат Массачусетс).

Евгения Рябцева
Портал «Вечная молодость» по материалам The Scientist: Richard Morimoto,

Материал с весьма оптимистичным подзаголовком «Генно-инженерный препарат от всех видов и стадий злокачественных опухолей пациенты могут получить через три-четыре года».

Однако любой человек, хоть сколько-нибудь знающий о терапии онкологических заболеваний, при виде такого прогноза в лучшем случае удивленно поднимет брови, а в худшем — возмутится. Рассказываем, что не так с очередной «научной сенсацией».

Что случилось?

Разработка препарата, о котором рассказали в «Известиях», ведется в Государственном научно-исследовательском институте особо чистых препаратов Федерального медико-биологического агентства (ФМБА) России. Замдиректора по научной работе института, член-корреспондент РАН и доктор медицинских наук, профессор Андрей Симбирцев, в этом материале под заголовком «В России создали лекарство от рака и проверили его в космосе» рассказал корреспонденту «Известий» о «белке теплового шока», который был кристаллизован в невесомости, на МКС, и теперь проходит доклинические испытания.

Сейчас исследования проводятся на грант Министерства образования и науки, а 100 миллионов рублей на клинические испытания ученые планируют найти с помощью частных инвесторов и программы государственного 50%-ного софинансирования. Чтобы его привлечь, разработчики собираются «стучаться во все двери, потому что препарат уникальный. Мы стоим на пороге открытия совершенно нового средства лечения рака. Оно позволит помочь людям с неизлечимыми опухолями».

«Мы уже изготавливаем препарат на производственных участках НИИ», — сообщает воодушевленным журналистам Андрей Симбирцев, добавляя, что в данный момент проходят испытания на мышах, а до пациентов он дойдет всего через три-четыре года.

В чем подвох?

Все это звучит очень вдохновляюще, однако белки теплового шока действительно известны давно, но люди почему-то до сих пор не сделали из них панацею от всех видов рака. Это довольно большое семейство белков, которые активируются в ответ на стресс при повышении (а иногда и при понижении) температуры. Они помогают клетке бороться с последствиями деградации структуры других белков. Самый известный пример такого изменения — сворачивание главного компонента яичного белка, альбумина, при жарке или варке, когда он из прозрачного становится белым. Так вот, белки теплового шока устраняют последствия этих изменений: «чинят» или окончательно утилизируют деградировавшие структуры. Многие белки теплового шока являются в то же время шаперонами, которые помогают другим белкам «сворачиваться» правильно.

Справка:
Шапероны — класс белков, основной функцией которых является восстановление третичной или четвертичной структуры белков, также они участвуют в образовании и диссоциации белковых комплексов.

Белки теплового шока есть во всех клетках. Однако в разных клетках (особенно опухолевых, которые сильно отличаются при разных видах рака как друг от друга, так и от нормальных клеток организма) эти белки ведут себя по-разному. К примеру, в одних видах рака экспрессия белка HSP-70 может быть как повышенной (при злокачественной меланоме), так и пониженной (при раке почки).

Чтобы понять, о каком белке идет речь и действительно ли он используется в терапии рака и может помочь при всех его видах, мы поговорили с доктором биологических наук Александром Сапожниковым . Этот ученый — руководитель лаборатории клеточных взаимодействий Института биоорганической химии имени М.М. Шемякина и Ю.А. Овчинникова РАН, которая занимается одним из самых перспективных для разработок в этом направлении белков теплового шока уже много лет. Он так прокомментировал эту статью:

«Я не скажу, что это бред, но это абсолютно некорректная информация. Автором идеи применения белков теплового шока с молекулярной массой 70 килодальтон (так называемые БТШ-70, по-английски HSP70) является мой друг и коллега Борис Маргулис. Он работает в Институте цитологии в Санкт-Петербурге.

Он и его жена Ирина Гужова занимаются этим белком всю жизнь (я тоже занимаюсь им много лет, но не исследованиями, связанными с терапией рака). Формально заведующей лабораторией является Ирина, она занимается изучением того, как белок связан с нейродегенеративными заболеваниями, а Борис — заведующий отделом. Он первый в мире человек, который предложил применять «голый», не нагруженный никакими опухолево-ассоциируемыми антигенами, белок.

Я не верил в его представления о таком применении этого белка (собственно, пока и не доказано, что это будет эффективно). Если «плясать от печки», есть некий индус, Прамод Сривастава , который в Индии родился, но учился, живет и работает в Америке. Он давным-давно сделал не просто «вакцину» против опухоли с помощью БТШ-70, но и открыл клинику и лечит ею онкологических больных. Сривастава выделяет этот белок прямо из опухоли: берет биопсию у пациентов, выделяет его из кусочков ткани (есть специальные способы получить очень высокую фракцию этого белка).

Однако белок, который получают из тканей онкологических больных, находится в прочной связи с опухоль-ассоциированными пептидами — теми признаками опухоли, которые распознает иммунная система. Поэтому, когда этот комплекс вводят больным, у большого количества больных вырабатывается иммунный ответ, и получается позитивный эффект для больного.

На самом деле, по статистике, этот эффект не превышает эффект от применения химиотерапии. Но все-таки химиотерапия «травит» организм, а вот такая «вакцинация» организм не «травит». Это очень давняя история, такой подход давным-давно применяется в клинике.
Александр Сапожников. Доктор биологических наук, профессор

Что касается Бориса Маргулиса, он (в частности, на базе моей лаборатории) показал (и опубликовал результаты своей работы), что если чистый белок, без всякой опухолевой нагрузки, добавить к опухолевым клеткам, то этот экзогенный белок заставляет опухолевые клетки выставлять на свою поверхность те самые опухолево-ассоциированные пептиды, которые в нормальном состоянии находятся внутри этих клеток, в цитоплазме. Тогда иммунная система их распознает, и организм будет своими силами отторгать эти клетки, бороться с опухолью.

Это было показано в культуре in vitro , то есть не в организме, а в пробирке. К тому же Борис Маргулис претендовал только на детские лейкемии, поскольку он связан с клиницистами в Питере. То, что Симбирцев в своем интервью сказал, — это уже расширение вот такого метода применения голого, чистого белка.

Механизм действия этого чистого белка — заставлять опухоль вытаскивать на поверхность (как сам Маргулис это назвал, «выдавливать») эти пептиды со своим эндогенным белком. Этот белок есть во всех клетках, и в мире нет ни единой клетки, у которой не было бы этого белка. Это очень древний, очень консервативный протеин, он есть у всех (о вирусах я не веду сейчас речи).

Сам Маргулис не потянул бы доклинические исследования, он получил (лет пять назад) грант совместно с Институтом особо чистых препаратов. В этом институте, видимо, и работает этот Симбирцев, его фамилию я слышал много раз, но коль скоро это Федеральное медико-биологическое агентство, к которому относится Институт иммунологии на Каширке, в котором я много лет работал, то, скорее всего, это Институт особо чистых препаратов, с которым он получил грант на доклинические исследования. В советские годы это было Третье управление Минздрава. Именно с этим институтом был получен грант на доклинику от Минобра на 30 миллионов на три года, который закончился два года назад.

Все бумажные дела Институт особо чистых препаратов сделал, они отчитались по своему гранту, что касается следующей стадии, продвижения препарата, там тоже нужны деньги. Это первая стадия клинических исследований. Тут Борис Маргулис, насколько я понимаю, уже отошел от разработок, отдав это на откуп Институту особо чистых препаратов.

Они делают этот белок, сделали биотехнологию, у меня он даже в холодильнике есть, Борис давал его для испытаний. Они в больших количествах его делают, хранят в лиофилизированной форме (в сухом виде), в стерильных ампулах. Собственно, этот препарат и надо, может быть с какими-то добавками, применять в клинических испытаниях. Но для этого нужны деньги.

Увидев случайно новость с интервью Симбирцева, я прочитал, послал Маргулису, спросил, читал ли он. Борис мне ответил, что Андрей (с которым он хорошо знаком) сделал какую-то глупость, даже не сослался на авторов. Автором этой идеи (применять чистый белок как противоопухолевый препарат в онкологии), повторюсь, является Борис Маргулис. Но, насколько я от него слышал в последнее время, он от этой проблематики отошел.

Я занимаюсь этим белком, но как иммуномодулятором, как и моя лаборатория. Мы немножко работали с противоопухолевыми свойствами, на мышиных моделях. Там действительно получились хорошие результаты. Я имею в виду «голый» белок, он просто обладает иммуностимулирующими свойствами. Кстати, еще большой вопрос, что является причиной его иммуностимулирующих свойств: сам белок или какие-то маленькие примеси, например липополисахариды. Этот белок получают в бактериальной культуре (в E.coli ), это самая распространенная техника получения рекомбинантных белков. Липополисахариды (ЛПС) — компонент клеточной стенки бактерий, и очистить культуру от этой примеси до конца очень сложно. Конечно, очищают, но какие-то мизерные концентрации остаются. Эти примеси ЛПС тоже обладают иммуностимулирующими свойствами просто потому, что иммунная система в процессе эволюции выработала свою защиту от бактерий. Как только «запах» бактерий появляется в организме, иммунная система активируется. Поэтому многие авторы сейчас считают, что иммуностимулирующие свойства этого белка, которые модулируют и противоопухолевый ответ, вызваны не БТШ как таковым, а его примесью. Но этот вопрос научный, дискуссионный и не имеет отношения к практике.

Сейчас, повторюсь, Борис Маргулис отходит от этой темы, от онкологии, и работает над малыми молекулами, которые способны регулировать продукцию этого белка. Он связался с химиками, которые умеют делать ингибиторы — такие специфические киназы, какие-то ферменты внутри клеток, которые прекращают их работу. Ингибиторы могут сказать какому-то ферменту: «Нет, ты не имеешь права работать».

Это делается очень просто: все ферменты имеют центр связывания с субстратом, и, если взять какую-то маленькую молекулу, которая встроится в этот центр связывания субстрата, он уже не сможет этот субстрат обрабатывать. Борис сейчас как раз занимается такими молекулами, которые ингибируют внутриклеточный синтез этого БТШ-70. И, действительно, такие молекулы очень актуальны, и не только для фундаментальной биологии, но и для практики, клинической медицины».

Если температура повышается, живой организм реагирует на это, производя своеобразные соединения, получившие название «белки теплового шока». Так реагирует человек, так отреагирует кошка, так реагирует любое существо, так как оно состоит из живых клеток. Впрочем, не только лишь рост температуры провоцирует синтез белка теплового шока хламидий, других видов. Нередко провоцируют ситуации сильные стрессы.

Общая информация

Так как белки теплового шока производятся организмом только в специфических ситуациях, они имеют ряд отличий от продуцируемых нормально соединений. Период их образования отличается угнетением экспрессии основного белкового пула, играющего важную роль для метаболизма.

БТШ-70 эукариот, DnaK прокариот - это такая семья, в которую ученые объединили белки теплового шока, значимые для выживания на клеточном уровне. Это означает, что благодаря таким соединениям клетка может продолжать функционирование даже в ситуации, когда стресс, нагрев, агрессивная среда противостоят этому. Впрочем, белки этого семейства могут участвовать и в протекающих в нормальных условиях процессах.

Биология на микроскопическом уровне

Если домены идентичны на 100 %, тогда эукариоты, прокариоты более чем на 50 % гомологичны. Ученые доказали, что в природе среди всех белковых групп именно 70 кДа БТШ - одна из наиболее консервативных. Посвящённые этому исследования были сделаны в 1988 и 1993 году. Предположительно объяснить явление можно через шаперонную функциональность, присущую белкам теплового шока во внутриклеточных механизмах.

Как это работает?

Если рассматривать эукариоты, то под влиянием теплового шока происходит индуцирование генов БТШ. Если некоторая клетка избежала стрессовых условий, тогда факторы имеются в ядре, цитоплазме в качестве мономеров. Такому соединению не присуща активность связывания ДНК.

Переживая стрессовые условия, клетка ведет себя следующим образом: Hsp70 отщепляется, что инициирует продуцирование денатурированных белков. БТШ формирует триммеры, активность меняет свой характер и задевает ДНК, что приводит со временем к аккумуляции компонентов в ядре клетки. Процесс сопровождается многократным ростом транскрипции шаперонов. Безусловно, спровоцировавшая это ситуация со временем проходит, и к моменту, когда это случается, Hsp70 вновь может включиться в БТШ. Активность, связанная с ДНК, сходит на нет, клетка продолжает работать, как ни в чем не бывало. Такую последовательность происходящего удалось выявить еще в 1993 году в исследованиях, посвященных БТШ, проведенных Моримото. Если организм поражен бактериями, тогда БТШ могут концентрироваться на синовиальной оболочке.

Зачем и почему?

Ученым удалось выявить, что БТШ формируются как результат влияния самых разных негативных, опасных для жизнедеятельности клетки ситуаций. Стрессовые, повреждающие влияния извне могут быть исключительно разнообразными, но приводящими к одному и тому же варианту. За счет БТШ клетка выживает при влиянии агрессивных факторов.

Известно, что БТШ подразделяются на три семейства. Кроме того, ученые выявили, что существуют антитела к белку теплового шока. Подразделение на группы БТШ производится с учетом молекулярной массы. Три категории: 25, 70, 90 кДа. Если в живом организме есть нормально функционирующая клетка, тогда внутри нее наверняка найдутся различные белки, перемешанные между собой, довольно-таки сходные. Благодаря БТШ денатурированные белки, а также свернувшиеся некорректно, могут снова стать раствором. Впрочем, кроме этой функции, есть и некоторые другие.

Что знаем и о чем догадываемся

До сих пор белок теплового шока хламидий, равно как и иные БТШ, не изучен окончательно. Конечно, есть некоторые группы белков, о которых ученые располагают довольно большим объемом данных, а есть такие, которые еще только предстоит освоить. Но уже сейчас наука дошла до того уровня, когда знания позволят говорить, что при онкологии белок теплового шока может оказаться действительно полезным средством, позволяющим победить одну из самых страшных болезней нашего века - рак.

Наибольшим объемом данных ученые располагают о БТШ Hsp70, способных вступать в связи с различными белками, агрегатами, комплексами, даже с аномальными. Со временем происходит высвобождение, сопровождаемое соединением АТР. Это значит, что в клетке снова появляется раствор, а белки, прошедшие некорректно процесс свертывания, могут заново быть подвергнуты этой операции. Гидролиз, соединение АТР - механизмы, сделавшие это возможным.

Аномалии и нормы

Сложно переоценить для живых организмов роль белков теплового шока. Любая клетка всегда содержит аномальные белки, чья концентрация может расти, если к этому есть внешние предпосылки. Типичная история - это перегрев или влияние инфекции. Это означает, что для продолжения жизнедеятельности клетки необходимо срочно сгенерировать большее количество БТШ. Активируется механизм транскрипции, что инициирует выработку белков, клетка подстраивается под меняющиеся условия и продолжает функционировать. Впрочем, наравне с уже известными механизмами многое еще только предстоит открыть. В частности, таким довольно большим полем для деятельности ученых являются антитела к белку теплового шока хламидий.

БТШ, когда полипептидная цепочка увеличивается, а они оказываются в условиях, делающих возможным вступление с нею в связь, позволяют избежать неспецифической агрегации и деградации. Вместо этого фолдинг происходит в нормальном режиме, когда в процессе задействованы необходимые шапероны. Hsp70 дополнительно необходим при развертке полипептидных цепей при участии АТР. Посредством БТШ удается достичь того, что неполярные участки также подвержены влиянию ферментов.

БТШ и медицина

В России ученые ФМБА смогли создать новый препарат, применив для его построения белок теплового шока. Лекарство от рака, представленное научными сотрудниками, уже прошло первичную проверку на подопытных грызунах, пораженных саркомами, меланомами. Эти эксперименты позволили уверенно говорить, что сделан значительный шаг вперед в борьбе с онкологией.

Ученые предположили и смогли доказать, что белок теплового шока - лекарство, а точнее, может стать основой для эффективного препарата, во многом именно благодаря тому, что эти молекулы формируются в стрессовых ситуациях. Так как они изначально организмом продуцируются, чтобы обеспечить выживание клеток, было сделано предположение, что при должной комбинации с другими средствами можно бороться даже с опухолью.

БТШ помогает препарату обнаруживать в больном организме пораженные клетки и справляться с некорректностью ДНК в них. Предполагают, что новый препарат станет в равной степени результативным для любого подтипа злокачественных заболеваний. Звучит похоже на сказку, но врачи идут еще дальше - они предполагают, что излечение будет доступным на совершенно любой стадии. Согласитесь, такой белок теплового шока от рака, когда пройдет все испытания и подтвердит свою надежность, станет бесценным приобретением для человеческой цивилизации.

Диагностировать и лечить

Наиболее подробную информацию о надежде современной медицины рассказал доктор Симбирцев, один из тех, кто работал над созданием медикамента. Из его интервью можно понять, по какой логике ученые построили препарат и каким образом он должен принести эффективность. Кроме того, можно сделать выводы, прошел ли уже белок теплового шока клинические испытания или это еще впереди.

Как уже было указано ранее, если организм не переживает стрессовых условий, тогда продуцирование БШ имеет место в исключительно малом объеме, но он существенно возрастает с изменением внешнего влияния. В то же время нормальный организм человека не в состоянии продуцировать такое количество БТШ, которое помогло бы победить появившееся злокачественное новообразование. "А что произойдет, если ввести БТШ извне?" - подумали ученые и сделали эту идею основой для исследования.

Как это должно сработать?

Чтобы создать новое лекарство, ученые в лабораторных условиях воссоздали все необходимое, чтобы живые клетки начали продуцировать БТШ. Для этого был получен человеческий ген, претерпевший клонирование при применении новейшей аппаратуры. Бактерии, исследованные в лабораториях, видоизменялись до тех пор, пока не начали самостоятельно продуцировать столь желанный для ученых белок.

Научные работники на основе полученной при исследованиях информации сделали выводы о влиянии БТШ на человеческий организм. Для этого пришлось организовать белка. Сделать это совсем непросто: пришлось направить пробы на орбиту нашей планеты. Это обусловлено тем, что земные условия не подходят для правильного, равномерного развития кристаллов. А вот космические условия допускают получение именно тех кристаллов, которые были нужны ученым. По возвращении на родную планету подопытные образцы были разделены между японскими и русскими учеными, которые взялись за их анализ, что называется, не теряя ни секунды.

И что нашли?

Пока работы в этом направлении все еще ведутся. Представитель группы ученых сказал, что удалось точно установить: нет точной связи между молекулой БТШ и органом или тканью живого существа. А это говорит об универсальности. Значит, если белок теплового шока и найдет применение в медицине, он станет панацей сразу от огромного количества заболеваний - какой бы орган ни оказался поражен злокачественным новообразованием, его удастся вылечить.

Первоначально ученые изготовили препарат в жидкой форме - подопытным его вводят инъективно. В качестве первых экземпляров для проверки средства были взяты крысы, мыши. Удалось выявить случаи излечения как на начальных, так и на поздних стадиях развития болезни. Текущая стадия именуется доклиническими испытаниями. Ученые оценивают сроки ее завершения не менее чем в год. После этого придет время клинических испытаний. На рынке новое средство, возможно, панацея, будет доступно еще через 3-4 года. Впрочем, как отмечают ученые, все это реально лишь в том случае, когда проект найдет финансирование.

Ждать или не ждать?

Конечно, обещания врачей звучат привлекательно, но в то же время справедливо вызывают недоверие. Сколько времени человечество страдало от рака, как много жертв у этой болезни было в последние несколько десятилетий, а тут обещают не просто эффективный препарат, но настоящую панацею - от любого вида, на любом сроке. Да как можно поверить в такое? А хуже того - поверить, но не дождаться, или дождаться, но окажется, что вовсе средство не так хорошо, как того ожидали, как это было обещано.

Разработка препарата - это методика генной инженерии, то есть наиболее передовой области медицины как науки. Это означает, что при должном успехе результаты и правда должны быть впечатляющими. Впрочем, одновременно это означает, что процесс исключительно дорогостоящий. Как правило, инвесторы готовы вкладывать довольно большие средства в многообещающие проекты, но когда тематика настолько громкая, давление большое, а временные рамки довольно размыты, риски оцениваются как огромные. Это сейчас звучат оптимистичные прогнозы на 3-4 года, но все знатоки рынка хорошо знают, сколь часто временные рамки расползаются до десятилетий.

Удивительно, невероятно… или все-таки?

Биотехнологии - это область, для обывателя закрытая к пониманию. Поэтому остается только надеяться на слова «успешность доклинических испытаний». Рабочее наименование препарат получил «Белок теплового шока». Впрочем, БТШ - это только главный компонент медикамента, обещающего стать прорывом на рынке лекарств против онкологии. Кроме него, в состав предполагается включение еще ряда полезных веществ, что будет гарантом действенности средства. А возможным все это стало благодаря тому, что новейшие исследования БТШ показали, что молекула не просто помогает уберечь от повреждения живые клетки, но еще и является для иммунитета этаким «указующим перстом», помогающим выявить, какие клетки поражены опухолью, а какие нет. Проще говоря, при появлении в организме в достаточно большой концентрации БТШ, как надеются ученые, иммунный ответ сам по себе уничтожит больные элементы.

Надеяться и ждать

Подводя итоги, можно сказать, что новинка против опухоли основана на том, что организм и сам имеет средство, которое могло бы уничтожить новообразование, просто от природы оно достаточно слабое. Концентрация настолько мала, что ни о каком терапевтическом эффекте не приходится и мечтать. В то же время частично БТШ находятся в клетках, не пораженных опухолью, и из них молекула никуда не «уйдет». Поэтому и необходима поставка полезного вещества извне - чтобы оно далее директивно влияло на пораженные элементы. Между прочим, пока ученые предполагают, что даже побочных эффектов у препарата не будет - и это при столь высокой результативности! А объясняют такое «волшебство» тем, что исследования показали - токсичности нет. Впрочем, окончательные выводы будут сделаны, когда доклинические испытания подойдут к концу, что потребует не менее года.



Loading...Loading...