Газоперекачивающие агрегаты гпа ц 16. Разработка ГПА нового поколения

(ГПА) полностью автоматизирован, устанавливается в индивидуальном контейнере и может эксплуатироваться при температуре окружающего воздуха от -55 до + 45 °С.

1.1. Компоновка агрегата

Агрегат состоит из отдельных функционально завершенных блоков и сборочных единиц полной заводской готовности, стыкуемых между собой на месте эксплуатации (рис.1 и 2).

Турбоблок с газотурбинным двигателем НК-16СТ и центробежным нагнетателем НЦ-16;
- воздухоочистительное устройство (ВОУ);
- шумоглушитель всасывающего тракта;
- всасывающая камера;
- промежуточный блок;
- блок вентиляции;
- два блока маслоохладителей;
- выхлопной диффузор;
- выхлопная шахта;
- шумоглушители выхлопного тракта;
- блок автоматики;
- блок маслоагрегатов;
- блок фильтров топливного газа;
- система подогрева циклового воздуха;
- система пожаротушения;
- система обогрева контейнера.

Базовой сборочной единицей агрегата является турбоблок, устанавливаемый на монолитном железобетонном фундаменте. Над турбоблоком на отдельной опоре установлены сборочные единицы выхлопного устройства двигателя и системы подогрева циклового воздуха. Забор воздуха для двигателя НК-16СТ осуществляется через воздухоочистительное устройство, шумоглушители, всасывающую камеру и патрубок промежуточного блока.

С целью обеспечения удобства обслуживания агрегата основные узлы маслосистемы размещены в отдельном блоке маслоагрегатов, а приборы и щиты системы автоматического управления агрегатом - в блоке автоматики.

Для повышения компактности ГПА блоки вентиляции и маслоохладителей размещены соответственно на промежуточном блоке и блоке маслоагрегатов. Для повышения надежности двигателя НК-16СТ в состав агрегата введен блок фильтров топливного газа. Обогрев блоков ГПА осуществляется горячим воздухом из общестанционного коллектора.

Стыковка всех блоков производится через гибкие переходники, позволяющие компенсировать неточности установки при монтаже агрегата.

ОСНОВНЫЕ ОБОЗНАЧЕНИЯ........................................................6
1. ГАЗОПЕРЕКАЧИВАЮЩИЙ АГРЕГАТ ГПА -Ц-16..........................9
1.1. Компоновка агрегата.........................................................9
1.2. Блоки агрегата...............................................................10
1.3. Газотурбинный двигатель НК-16СТ....................................19
1.4. Нагнетатель НЦ-16.........................................................23
2. СИСТЕМА МАСЛОСНАБЖЕНИЯ ДВИГАТЕЛЯ НК-16СТ .............29
2.1. Состав масляной системы.................................................30
2.2. Работа масляной системы.................................................32
2.3. Параметры работы системы...............................................33
3. СИСТЕМА СМАЗКИ НАГНЕТАТЕЛЯ НЦ-16..............................35
3.1. Состав системы смазки....................................................35
3.2. Работа системы..............................................................35
3.3. Параметры работы системы..............................................38
4. СИСТЕМА УПЛОТНЕНИЯ НАГНЕТАТЕЛЯ................................39
4.1. Состав системы..............................................................39
4.2. Работа системы уплотнения...............................................39
4.3. Параметры работы системы...............................................41
5. СИСТЕМА РЕГУЛИРОВАНИЯ ДВИГАТЕЛЯ НК-16СТ ..................42
5.1. Система запуска двигателя...................................................42
5.1.1. Блок автоматического запуска.......................................42
5.1.2. Воздушный стартер.....................................................45
5.1.3. Регулирующее устройство стартера.................................45
5.2. Система подачи пускового топливного газа.............................46
5.3. Система подачи топливного газа...........................................46
5.4. Система гидромеханической защиты двигателя от
раскрутки вала силовой турбины..........................................48
5.4.1. Ограничитель оборотов вала силовой турбины..................49
5.4.2. Работа гидромеханической защиты.................................50
5.5. Система регулирования режима работы.................................50
5.5.1. Регулятор оборотов.....................................................51
5.5.2. Дозатор газа..............................................................52
5.5.3. Ограничитель оборотов вала ВД....................................55
5.5.4. Работа системы регулирования режима работы..................56
5.5.5. Управление элементами механизации компрессора............58
5.6. Система маслоснабжения регулирования...............................60
6. СИСТЕМА АВТОМАТИЧЕСКОГО УПРАВЛЕНИЯ ГАЗОПЕРЕКАЧИВАЮЩИМ АГРЕГАТОМ ГПА -Ц-16 НА БАЗЕ
МСКУ-СС 4510-39.....................................................................61
6.1. Назначение...................................................................61
6.2. Технические характеристики.............................................61
6.3. Основные функции, выполняемые комплексом МСКУ-СС 4510
в составе САУ.............................................................62
6.3.1. Функции управления...................................................62
6.3.2. Функции регулирования...............................................62
6.3.3. Функции контроля......................................................63
6.3.4. Информационные функции...........................................63
6.4. Состав САУ.....................................................................63
6.5. Структурная схема комплекса.............................................64
6.5.1. Устройство управления...............................................65
6.5.2. Устройство регулирования...........................................67
6.5.3. Устройство связи с объектом дискретное........................67
6.6. Средства представления информации....................................68
6.6.1. Пульт оператора........................................................68
6.6.2. Панель управления....................................................69
6.7. Программный комплекс "Аргус"..........................................70
6.7.1 .Требования к аппаратному обеспечению и
программному окружению...........................................71
6.7.2. Виды представляемой информации................................71
6.7.3. Организация экрана...................................................71
6.7.4. Окно обобщенной сигнализации....................................72
6.7.5. Терминал.................................................................73
6.7.6. Окна терминала.........................................................74
6.7.7. Окно сигнализации....................................................74
6.7.8. Окно аналоговых параметров.......................................76
6.7.9. Окно графика аналогового параметра.............................78
6.7.10. Окно группового графика аналоговых параметров............79
6.7.11. Окно характеристик..................................................80
6.7.12. Журнал событий......................................................80
6.7.13. Ретросистема..........................................................82
6.7.14. Окно управления......................................................83
6.7.15. Окно мнемосхемы....................................................84
6.7.16. Окно диагностики....................................................85
6.7.17. Окно архивов..........................................................86
6.7.18. Ремонт МСКУ на работающем агрегате.........................87
7. РАБОТА СИСТЕМЫ АВТОМАТИЧЕСКОГО УПРАВЛЕНИЯ......88
7.1. Подготовка САУ к использованию......................................88
7.2. Порядок работы с САУ.......................................................88
7.2.1. Работа с ПЭВМ.........................................................88
7.2.2. Работа с панелью управления.......................................89
7.3. Режимы работы ГПА ..........................................................89
7.3.1. Подготовка ГПА к пуску.............................................89
7.3.2. Проверка защит по маслосистеме..................................91
7.3.3. Комплексная проверка кранов.......................................92
7.3.4. Холодная прокрутка...................................................93
7.3.5. Автоматический пуск "на кольцо".................................93
7.3.6. Выход в "магистраль"................................................95
7.3.7. Переход из "магистрали" на "кольцо".............................96
7.3.8. Нормальный останов..................................................96
7.3.9. Аварийный останов...................................................97
7.3.10. Проверка аварийных защит........................................98
7.3.11. Работа исполнительных механизмов.............................99
7.4. Предупредительные сообщения и аварийные защиты ГПА .......102
7.4.1. Аварийные защиты, вызывающие аварийный останов
со стравливанием газа из контура нагнетателя................102

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Агрегат ГПА-Ц-16

Агрегат ГПА-Ц-16 предназначен для транспортирования природного газа по магистральным газопроводам при рабочем давлении 56-76 кг/кв. см.

На дожимных компрессорных станциях ГПА работает с давлением на выходе до 41 кг/кв. см со сменной проточной частью нагнетателя.

ГПА полностью автоматизирован, устанавливается в индивидуальном контейнере и может эксплуатироваться при температуре окружающего воздуха от -55 до +45 град. С.

Газотурбинный двигатель НК -1 6СТ

воздухоочистительный газотурбинный двигатель агрегат

Стационарный газотурбинный двигатель НК16-СТ создан на базе авиационного турбовентиляторного двигателя НК-8-2У. Представляет из себя двухкаскадную трехвальную ГТУ. Состоит из двух модулей - газогенератора и свободной турбины, имеющих собственные рамы. Модули при эксплуатации могут заменяться.

Нагнетатель НЦ-16

Нагнетатель представляет из себя двухступенчатую центробежную машину, предназначенную для сжатия природного газа. Состоит из следующих составных частей. Наружного корпуса, который представляет собой стальной кованый цилиндр. К цилиндру с внешней стороны приварены стальные кованые патрубки - всасывающий и нагнетательный. К нижней части приварены опорные лапы нагнетателя, а в верхней части - опорные лапы под два гидроаккумулятора. С обоих торцов корпус закрыт стальными коваными крышками, которые фиксируются разрезными стопорныим кольцами и кронштейнами. Внутри наружного корпуса расположен внутренний корпус. Внутренний корпус состоит из камеры всасывания, диафрагмы, диффузоров, входного и обратного направляющих аппаратов. В нижней части внутреннего корпуса закреплены ролики, из которых внутренний корпус вкатывается в наружный.

Воздухоочистительные устройства / ВОУ -1 10 -4 Ц для агрегата ГПА -Ц-1 6

Преимущества и особенности

Использование комбинированной системы фильтрации (КСФ) на базе фильтров EMW filtertechnik VKKW RU-400-4-MG-1-PF-MPK-48/22 (производства фирмы EMW, Германия) обеспечивает очистку воздуха до степени F9 (максимальный размер частиц пыли после фильтров - не более 5 мкм);

Конструкция самого фильтра позволяет легко производить его замену в случае засорения;

Благодаря использованию фильтров EMW ВОУ обладает значительно меньшим сопротивлением по сравнению с аналогами;

В качестве обшивки козырька используется поликарбонат, крепящийся к каркасу при помощи алюминиевых профилей и саморезов, и обладающий рядом преимуществ по сравнению с другими материалами: невысокой стоимостью, меньшей массой, отсутствием коррозии, возможностью монтажа без использования сварки;

Байпасный клапан, установленный сверху блока фильтров, автоматически срабатывает при перепаде давления 70 мм. вод. ст на всасе и возвращается в исходное положение при перепаде давления 52 мм. вод. ст. Обогрев клапана позволяет срабатывать ему при любом диапазоне температур;

Конструкция блоков фильтров в виде призм позволяет уменьшить площадь и массу ВОУ;

Конструкция козырька ВОУ обеспечивает скорость воздуха на всасе до 0,8 м/с, что исключает попадание атмосферных осадков под козырек.

Технические характеристики

Наименование параметра

Изготовитель

ООО НПП «35-й Механический Завод»

Тип очистки воздуха

Комбинированная система фильтрации (EMW)

Количество ступеней очистки

3 ступени

Количество циклонов, шт.

Количество фильтров, шт.

Номинальный расход воздуха, кг/с

Гидравлическое сопротивление ВОУ, мм. вод. ст

Эффективность очистки воздуха от частиц более 5 мкм., %

Масса, кг

Габариты, мм

10450х6900х5780

Газотурбинный двигатель НК-16СТ

Газотурбинный двигатель НК-16СТ для газодобывающей отрасли создан на базе авиационного двигателя НК-8-2У, что обеспечивает его высокую надежность и эффективность. Применяется в газоперекачивающих агрегатах ГПА-Ц-16.

Серийное изготовление и поставка двигателя НК-16СТ на магистральные газопроводы производятся с 1982 года. Выпущен 1141 двигатель. Суммарная наработка парка двигателей составляет больше 40 миллионов часов. В связи с высокой надежностью данный привод нашел применение вэнергетике. В настоящее время на более чем 30 электростанциях двигатели НК-16СТ используют в качестве приводов энергоустановок, работающих на попутном нефтяном газе.

Технические характеристики

Мощность, не менее:

Эффективный КПД, не менее:

Диапазон изменения частоты вращения приводного вала свободной турбины:

3975-5350 об./мин.

Окислов азота:

Окиси углерода:

Максимальный уровень звукового давления:

Масса двигателя с рамой:

Расход топливного газа:

Запуск двигателя:

автоматический

Температура газа на выходе из свободной турбины:

Гарантийный ресурс:

Межремонтный ресурс:

25 000 часов

Назначенный ресурс:

100 000 часов

Применяемое масло:

Система электрического запуска газотурбинного двигателя

Электростартер СТЭ-18СТ

Одна из последних разработок ЗАО «Эверест-турбосервис» и ОАО «Электропривод» (г. Киров) - создание электростартера СТЭ-18СТ для запуска газотурбинного двигателя НК-16СТ и его модификаций мощностью 16-20 МВт, используемого ОАО «Газпром» более чем в 600 газоперекачивающих агрегатах.

Преимущество новой разработки заключается в замене турбодетандерного запуска двигателя с помощью сжатого природного газа (в этом случае в атмосферу суммарно выбрасывается до 3 млн. м3 природного газа в год) на экологически чистый электрозапуск. Это позволит упростить систему запуска, снизить расход природного газа, повысить экологическую и технологическую безопасность. Данная разработка отвечает всем требованиям по экологичности эксплуатируемого оборудования.

Электростартер устанавливается на место пневмостартера и не требует доработки места стыковки с коробкой привода агрегатов двигателя, что позволяет производить монтаж системы электрозапуска с электростартером СТЭ-18СТ в условиях эксплуатации.

Номинальная мощность электростартера СТЭ-18СТ - 65 кВт, номинальный крутящий момент, развиваемый электростартером, составляет 245 Н/м (25 кгс/м), режим его работы повторно-кратковременный. Управление электростартером осуществляется блоком управления БУС-18СТ, который преобразует напряжение переменного трехфазного тока 380В, 50Гц в напряжение переменного трехфазного тока от 0 до 380В и частотой от 0 до 400Гц. Блок управления определяет готовность электростартера к работе, задает режимы его работы, момент вращения электростартера, выдает сигнал на отключение, а так же позволяет провести диагностику и настройку параметров электростартера.

Электростартер СТЭ-18СТ сертифицирован и имеет маркировку взрывозащиты 1ExdIIВТ3. Его применение разрешено во взрывоопасных зонах.

В ноябре 2006 года электростартер СТЭ-18СТ в составе системы электрозапуска двигателя НК-16СТ прошел успешные стендовые испытания на стенде Зеленодольского машиностроительного завода. Испытания электростартера проводились в соответствии с действующим на компрессорных станциях ОАО «Газпром» алгоритмом запуска двигателей НК-16СТ, то есть неоднократно повторялась серия из трех холодных прокруток и запуска двигателя. Максимальное значение температуры обмоток статора электростартера при этом составило 76°С.

В соответствии с «Программой приемочных испытаний системы электрического запуска двигателя НК-16СТ в газоперекачивающем агрегате ГПА-Ц-16 на КС «Вязниковская» ООО «Волготрансгаз» в апреле-мае 2007 года на двигателе НК-16СТ выполнена замена воздушного стартера на электростартер СТЭ-18СТ с блоком управления БУС-18СТ. После отладки установленного оборудования агрегат ГПА-Ц-16 был выведен на режим «Магистраль».

В июне 2007 года система электрического запуска двигателя НК-16СТ без замечаний прошла предварительные испытания в объеме «Программы приемочных испытаний системы электрического запуска двигателя НК-16СТ в газоперекачивающем агрегате ГПА-Ц-16 на КС «Вязниковская» ООО «Волготрансгаз». Электростартер СТЭ-18СТ полностью обеспечил выполнение циклограммы холодной прокрутки, горячего запуска и промывки газовоздушного тракта двигателя НК-16СТ.

В августе 2007 года с целью оценки эффективности и работоспособности системы электрического запуска двигателей НК-16СТ (НК-16-18СТ) с электростартером СТЭ-18СТ и принятия решения по дальнейшему внедрению данной системы специальной комиссией проведены приемочные испытания на объекте ОАО «Газпром» - КС «Вязниковская» ООО «Волготрансгаз». На основании положительного результата приемочных испытаний Приемочной комиссией ОАО «Газпром» принято решение о доработке остальных двигателей НК-16СТ на КС «Вязниковская» системами электрического запуска и рекомендовано применение данной системы электрозапуска на других объектах ОАО «Газпром».

На двигателях НК-16СТ (НК16-18СТ) в июне 2009 года на КС «Вязниковская» специалистами ЗАО «Эверест-Турбосервис» и ОАО «Электропривод» была выполнена доработка системы запуска путем замены пневмостаретера на электростартер СТЭ-18СТ. Решение о переводе всех двигателей КС «Вязниковская» на систему электрического запуска было принято после 2,5 лет лидерной эксплуатации системы с электростартером СТЭ-18СТ на одном из двигателей этой станции. За это время электростартер выполнил около 500 запусков и не имел дефектов.

В процессе оборудования двигателей системой электрозапуска проводилась доработка электротехнической части газоперекачивающего агрегата ГПА-Ц-16 для подключения электростартера к основному вводу существующего вводно-распределительного устройства, расположенного в отсеке автоматики ГПА. На каждом двигателе после монтажа системы электрического запуска и доработки электрики ГПА выполнялись холодные прокрутки, горячие запуски и промывка газовоздушного тракта, после чего агрегат по акту передавался эксплуатационниками.

Кроме того, продолжаются испытания оснащенного электростартером СТЭ-18СТ двигателя НК-361 мощностью 25 МВт, установленного на магистральном газотурбовозе ГТ-1.

Технический потенциал электростартера СТЭ-18СТ, проявленный при испытаниях, позволяет использовать его в системах электрозапуска газотурбинных двигателей других типоразмеров и мощности.

Блок управления стартером БУС-18СТ

Технические характеристики:

· Электропитание и управление электростартером осуществляется от блока управления стартером БУС-18СТ.

· Электропитание БУС осуществляется от сети переменного трехфазного тока:

· Напряжение питание 380В

· Частота напряжения 50Гц

· Номинальная мощность электростартёра 60…65кВт

· Номинальный момент, развиваемый электростартёром 245Н*м (25 кгс*м)

· Максимальный момент, развиваемый электростартёром, не менее 539Н*м (55 кгс*м)

· Ток, потребляемый электростартёром

· при номинальном моменте, не более 120А

· Частота выходного вала электростартёра:

o на режиме холодной прокрутки 1380 об/мин

o на режиме горячего запуска 2600 об/мин

· Напряжение управляющих сигналов 27В

· Режим работы повторно-кратковременный

· Масса электростартёра, не более 57 кг

· 230х440Габариты электростартёра

· Габариты БУС 1500х1000х400 мм

· Масса БУС 250 кг

Нагнетатель НЦ -1 6

Корпус нагнетателя позволяет устанавливать проточную часть на весь ряд мощностей двигателей и получить высокий политропный КПД на конечное давление 56, 76 и 85 кгс/см2 и отношения давлений 1,36; 1,44 и 1,5.

Для газоперекачивающих агрегатов производятся современные нагнетатели с электромагнитным подвесом ротора и газодинамическими уплотнениями. Нагнетатели предназначены для перекачки природного газа по магистральным газопроводам. Базовые корпуса нагнетателей расcчитаны на установку сменных проточных частей, на конечное давление 56, 76 и 85 кгс/см2 и отношения давлений 1,36, 1,44 и 1,5.

Нагнетатели поставляются также и в составе нагнетательных установок, включающих блок нагнетателя с системами обеспечения.

Корпус нагнетателя на сборке

Установка нагнетательная центробежная УНЦ-16-76/1,44 применена в ГПА-16 «Волга», нагнетатель НЦ-12 56/1,44 применен в ГПА - 12 «Урал» и нагнетатель НЦ-8-56/1,44 применен в АГПУ - 8 «Волга». Нагнетатель НЦ-16-76/1,44 создан на высоком техническом уровне с использованием магнитного подвеса ротора и «сухих» газодинамических уплотнений. Применение пространственных лопаток рабочих колес и безлопаточного диффузора обеспечило получение политропного КПД в рабочей точке 85% и широкий диапазон эффективной работы нагнетателя. Конструктивно нагнетатели выполнены на базе лицензий фирмы «Дрессер» (США).

Твердосплавное кольцо со спиральными канавками «сухого» уплотнения

Предусмотрена возможность установки в нагнетатель любого из двух концевых уплотнений: торцовых масляных и «сухих» газодинамических. Подшипники применяются как гидродинамические масляные, так и «сухие» электромагнитные.

Техническая характеристика нагнетателей и нагнетательных установок с газотурбинным приводом

Область применения

Назначение

Произво-дитель-

Давление, МПа (кгс/см 2) (абс).

Газотурбинный двигатель

Габариты установки,

Масса установки,

Начальное

Конечное

Мощность,

Частота вращения ротора, об/мин

АГПУ-8 «Волга»

Перекачка природного газа по магистраль-

ному газо-проводу

2340х
1320х
1380

ГПА-12 «Урал»

2620х
2670х
1700

2900х
2500х
1760

ГПА-16 «Волга»

14550х
12000х
5300

Литература

1. http://compressormash.ru

3. http://www.new.turbinist.ru

Размещено на Allbest.ru

Подобные документы

    Описание конструкции, назначение и условия работы сварного узла газотурбинного двигателя. Выбор способа сварки и его обоснование, выбор сварочных материалов и режимов сварки. Выбор методов контроля: внешний осмотр и обмер сварных швов, течеискание.

    курсовая работа , добавлен 14.03.2010

    Тип станка (механизма), его основные технические данные. Циклограмма (последовательность операций), режимы работы главного привода. Выбор рода тока и напряжения и типа двигателя. Расчет механических характеристик выбранного двигателя, проверка двигателя.

    курсовая работа , добавлен 09.12.2010

    Использование системного анализа при исследовании масляной системы газотурбинного двигателя с целью изучения его эффективности. Схема маслосистемы с регулированным давлением масла. Структурный, функциональный анализ системы. Инфологическое описание.

    курсовая работа , добавлен 04.05.2011

    Понятие и общая характеристика, назначение и условия работы бурильной колонны, ее внутренняя структура и основные элементы, направления и условия практического применения. Динамические нагрузки на бурильную колонну, определяющие долговечность двигателя.

    реферат , добавлен 25.11.2014

    Проектирование рабочего процесса газотурбинных двигателей и особенности газодинамического расчета узлов: компрессора и турбины. Элементы термогазодинамического расчета двухвального термореактивного двигателя. Компрессоры высокого и низкого давления.

    контрольная работа , добавлен 24.12.2010

    Выбор и обоснование мощности и частоты вращения газотурбинного привода: термогазодинамический расчет двигателя, давления в компрессоре, согласование параметров компрессора и турбины. Расчет и профилирование решеток профилей рабочего колеса турбины.

    курсовая работа , добавлен 26.12.2011

    Профилирование ступени компрессора приводного газотурбинного двигателя. Построение решеток профилей дозвукового осевого компресора и турбины. Расчет треугольников скоростей на трех радиусах. Эскиз камеры сгорания. Профилирование проточной части диффузора.

    курсовая работа , добавлен 22.02.2012

    Расчет основных показателей во всех основных точках цикла газотурбинного двигателя. Определение количества теплоты участков, изменение параметров для процессов и их работу. Расчет термического коэффициент полезного действия цикла через его характеристики.

    курсовая работа , добавлен 19.05.2009

    Проектирование проточной части авиационного газотурбинного двигателя. Расчёт на прочность рабочей лопатки, диска турбины, узла крепления и камеры сгорания. Технологический процесс изготовления фланца, описание и подсчет режимов обработки для операций.

    дипломная работа , добавлен 22.01.2012

    Расчет на прочность узла компрессора газотурбинного двигателя: описание конструкции; определение статической прочности рабочей лопатки компрессора низкого давления. Динамическая частота первой формы изгибных колебаний, построение частотной диаграммы.

Введение


Система ПО и КЗ на КС в первую очередь направлена на предупреждение аварий на опасных производственных объектах КС (ГПА) и позволяет обслуживающему персоналу локализовать и ликвидировать пожар. Применение сертифицированной современной техники, датчиков в полной мере способствует безопасности на объекте.

Оборудование газоперекачивающих агрегатов размещено в здании, состоящем из двух залов, разделённых перегородкой: Помещение нагнетателей (помещение с взрывоопасной зоной класса В-1а, по ПУЭ), помещение двигателя (зона класса П-1, по ПУЭ). Оборудование САУ ГПА расположено в блок-боксе МСКУ (зона класса П-Па, по ПУЭ).

Пожарная опасность оборудования ГПА обусловлена свойствами природного газа, турбинного масла (применяемых в системах смазки, охлаждения и уплотнения ГПА), наличием нагретых технологических поверхностей, технологических выхлопных газов, возможными короткими замыканиями кабелей питания, управления и т.д.

Система пожарообнаружения, контроля загазованности и формирования сигналов управления автоматическими средствами пожаротушения (ПО и КЗ) представляет собой комплекс средств пожарообнаружения, формирования сигналов управления технологическим оборудованием пожаротушения и оповещения о пожаре защищаемого объекта. Система строится с использованием современных программно-технических средств: контроллеров поставки фирмы Compressor Control Corporation (CCC) США, датчиков контроля пламени и загазованности фирмы Fen Wai (США).

Для контроля загазованности в укрытии ГПА применяются датчики газового анализа фирмы Det Ironies. В помещении двигателя и нагнетателя устанавливают по одному датчику газового анализа, которые размещаются в зонах, возможных утечек метана в укрытиях.

Выбор указанного оборудования обусловлен его высокими техническими характеристиками, надёжной работой и большим сроком службы.

Конструкция всех элементов Системы ПО и КЗ обеспечивает электрическое сопротивление изоляции не менее 20 Ом и выдерживает в течение 1 минуты без пробоя и поверхностного разряда испытательное напряжение синусоидальной формы частотой 50 Гц.

Модульная конструкция контроллера позволяет определить среднее время восстановления работоспособного состояния Системы ПО и КЗ путем замены отказавшего оборудования из состава ЗИП - не более 1 часа.

Система ПО и КЗ рассчитана на круглосуточную непрерывную работу при среднем сроке службы не менее 10 лет.

Средняя наработка системы на отказ не менее - 30000 часов на шлейф. Под отказом понимается неисправность, заключающаяся в отсутствии передачи информации при сохранении функции автоматического управления.

Контроллер Системы с блоком системного электропитания, выходными реле собран в шкафу, который устанавливается в помещении агрегатной автоматики в непосредственной близости от ГПА.

Станция Оператора состоит из компьютера и монитора промышленного исполнения. Питание Станция Оператора осуществляет инвертор К-080.2.

Пульт управления Системой ПО, КЗ содержит:

световую индикацию состояния Системы по всем, помещениям и режимам работы охраняемого объекта;

кнопки дистанционного пуска ОГВ предусмотренные регламентом в помещениях ГПА;

кнопки экстренного пуска ОГВ;

световую сигнализацию наличия основного и резервного питания;

световую сигнализацию неисправности контроллера, шлейфов, ЦУ;

1. Общая часть


.1 Требования технологического процесса к системе автоматического управления


Опасность возникновения пожаров на предприятиях газовой промышленности определяется, прежде всего, физико-химическими свойствами природного газа, который при несоблюдении определенных требований безопасности воспламеняется, вызывает пожары и взрывы, влекущие за собой аварии. Степень пожарной опасности зависит также от особенностей технологического процесса производства. Для предприятий транспорта газа характерны наличия большого количества горючих газов в магистральных газопроводах, высокое давление в трубопроводах, наличие большого количества ГСМ (турбинного масла).

Опасными факторами пожара, воздействующими на людей, являются открытый огонь и искры; повышенная температура предметов, воздуха; токсичные продукты горения, дым; пониженная концентрация кислорода; обрушение и повреждение зданий, сооружений, установок; взрыв.

Взрывоопасные концентрации природного газа образуются во время отключения трубопроводов, резервуаров и аппаратов, когда не полностью удаленный газ смешивается с поступающим воздухом.

Как показывают статистика и опыт эксплуатации, пожары на КС происходят в основном из-за воспламенения масла в компрессорных цехах при разрыве маслопроводов и попадания его на горячие поверхности газоперекачивающих агрегатов и разрушении обвязочных газопроводов компрессорных цехов, сопровождающихся воспламенением газа и других горючих веществ и материалов; попадания посторонних предметов в полость нагнетателя; проникновения газа к очагу пожара из-за неплотного закрытия кранов в технологической обвязке; нарушений требований действующих правил и инструкций во время проведения огневых и газоопасных работ, а также требований пожарной безопасности персоналом служб УМГ на территориях КС.

При авариях в помещениях взрывоопасные концентрации газа возникают в первую очередь вблизи места утечки газа, а затем распространяются по всему помещению. На открытых площадках вблизи места утечки образуется зона загазованности, распространяющаяся по территории объекта. Величина ее при аварийном истечении газа зависит от многих факторов, главные из которых - расход газа, форма и направление его струи, метеорологические условия, рельеф местности. Наибольшее влияние на величину зоны загазованности оказывает ветер.

При авариях, связанных с разрушением газопроводов, в атмосферу выбрасывается большое количество газа. При наличии пламени газовое облако воспламеняется.

Возможные источники воспламенения - открытое пламя, электрические и механические искры, воспламенение пирофорных отложений, работающие двигатели внутреннего сгорания, разряды статического электричества, грозовые разряды. После сгорания газового облака горение локализуется в месте утечки газа. Борьба с пожарами и мероприятия по их предупреждению могут быть эффективными только в том случае, когда противопожарные правила усвоены и повседневно соблюдаются всем персоналом предприятия.

Согласно «Правилам устройства электроустановок» (ПУЭ) все производственные помещения и установки, в которых размещается электрооборудование, по степени взрыво - и пожароопасности делятся на классы: B-I, B-Ia, B-I6, В-П, В-2а, П-I, П-2, П-2а, П-Ш, В-1г и Н (В-взрывоопасные, П - пожароопасные, Н - невзрыво - и непожароопасные).

Категория А - производства, связанные с получением, применением или хранением газов и паров с нижним пределом взрываемости до 10% (по объему), содержащихся в таких количествах, при которых возможно образование с воздухом взрывоопасных смесей; жидкостей с температурой вспышки паров 28°С и ниже; твердых веществ и жидкостей, воспламенение или взрыв которых может последовать при взаимодействии с водой или кислородом воздуха.

Категория Б - производства, связанные с обработкой, применением, образованием или хранением газов и паров с нижним пределом взрываемости более 10% (по объему), содержащихся в количествах, достаточных для образования взрывчатых смесей; жидкостей с температурой вспышки паров от 28 до 120 оС; горючих веществ, выделяющих пыль или волокна в количестве, достаточном для образования взрывоопасных смесей.

Категория Г - производства, связанные с обработкой несгораемых веществ и материалов в горячем состоянии, раскаленном или расплавленном состоянии с выделением лучистой энергии, искр, пламени, а также производства, связанные со сжиганием твердого, жидкого и газообразного топлива (литейные и кузнечные цехи, котельные и др.).

Категория Д - производства, обрабатывающие несгораемые вещества и материалы в холодном состоянии, механические цехи холодной обработки металлов, компрессорные станции для нагнетания воздуха, водонасосные станции, склады металла, металлоизделий и др.

В каждом цехе, на складе и других объектах на основе действующих правил пожарной безопасности должны быть разработаны противопожарные инструкции с учетом специфики производства, а также оперативный план ликвидации пожара, и проводиться систематические тренировки персонала по тушению пожара. В инструкциях по пожарной безопасности следует предусматривать:

Требование пожарной безопасности при нахождении персонала на территории КС;

места и порядок содержания средств пожаротушения, пожарной сигнализации и связи;

порядок выполнения огневых и газоопасных работ на территории КС;

порядок допуска и правила движения транспорта на территории КС;

требования к содержанию территории, дорог, подъездов к зданиям, сооружениям и водоисточникам;

обязанности персонала цехов при возникновении пожара, правила вызова пожарной команды, остановки и отключения оборудования.

В компрессорном цехе запрещается:

прокладывать временные электрические сети;

сушить спецодежду на приборах центрального отопления, горячих поверхностях агрегатов и газовых коммуникациях;

загромождать проходы и выходы из помещений, а также подступы к средствам пожаротушения, и наружным стационарным лестницам;

работать во взрывоопасных помещениях в обуви со стальными подковками и на стальных гвоздях;

применять открытый огонь для отогревания трубопроводов, запорных устройств и другого оборудования;

проводить электросварочные работы с нарушением действующих правил и инструкций;

осуществлять какие-либо работы, связанные с заменой и ремонтом арматуры на маслопроводах и разборкой деталей регулирования (кроме замены манометров) при работающем агрегате.

При возникновении пожара производственный персонал обязан:

немедленно перекрыть доступ газа или масла к месту пожара;

вызвать пожарную команду или добровольную пожарную дружину; принять меры к тушению пожара имеющимися средствами пожаротушения;

поставить в известность руководство компрессорного цеха и УМГ;

отключить приточно-вытяжную вентиляцию.

Для быстрой ликвидации аварийной ситуации и четкого взаимодействия необходимо, чтобы весь персонал знал свои конкретные обязанности и действия при возникновении пожара. Для этого следует регулярно проводить учебно-тренировочные занятия по ликвидации пожаров, примерный перечень очагов возникновения которых должен быть оговорен в инструкциях по ликвидации пожаров в цехах, зданиях и других помещениях станции.


1.2 Требования к функциям ПК ГПА


Пожарный контроллер (ПК ГПА) должен обеспечить выполнение следующих функций:

Прием электрических сигналов от ручных и автоматических пожарных извещателей, с передачей информации по цифровому каналу для световой индикации на АРМ защищаемого помещения, в котором произошло срабатывание ПИ, и включением звуковой и световой сигнализации;

извещение о пожаре при срабатывании двух пожарных извещателей одной зоны или при срабатывании двух пожарных извещателей, установленных в одном защищаемом отсеке, но в разных шлейфах пожарной сигнализации (посредством включения световой и звуковой сигнализации);

контроль исправности шлейфов пожарной сигнализации по всей их длине с автоматическим выявлением обрыва и (или) короткого замыкания в них, а также световую и звуковую сигнализацию на ПУ о возникшей неисправности шлейфа;

Автоматический контроль линий связи исполнительных элементов АУПТ на обрыв и автоматический контроль линий связи световых и звуковых оповещателей на обрыв и короткое замыкание, а также световую и звуковую сигнализацию о возникшей неисправности;

ручной или автоматический контроль работоспособности состояния узлов и блоков ПК ГПА с возможностью выдачи извещения об их неисправности на ПУ;

Формирование сигналов для запуска АУПТ в режимах управления «Автоматика включена» и «Автоматика отключена»;

формирование сигналов о срабатывании модульной АУПТ;

контроль массы ОГВ в баллонах АУПТ;

выдачу команд на исполнительные элементы АУПТ, световые и звуковые оповещатели, контроль и сигнализацию в соответствии с требованиями НПБ 75-98 и заданным алгоритмом пожаротушения;

Ручное выключение звуковой сигнализации только на ПУ о принятом извещении с сохранением световой индикации, при этом выключение звуковой сигнализации не должно влиять на прием извещений с других шлейфов сигнализации и на её последующее включение при поступлении нового тревожного извещения;

автоматическую передачу раздельных извещений о пожаре, тревоге, неисправности или загазованности на ПУ;

возможность программирования тактики формирования извещения о пожаре, в том числе и длительности извещения о тревоге;

сбор и обработку информации от оборудования САУ ПО, КЗ и АУПТ в реальном масштабе времени;

прием сигналов от оборудования контроля загазованности установленного в отсеках ОД (вторичный преобразователь установлен в ПКА) и ОН: «Загазованность высокая (10% НКПВ)», «Загазованность опасная (20% НКПВ)», «Неисправность» и аналогового сигнала (4…20мА) уровня загазованности;

Выдачу сигналов на устройства оповещения о превышении высокого / опасного уровня загазованности СН4 в защищаемых отсеках;

защиту органов управления от несанкционированного доступа посторонних лиц (ключ на ПУ, разрешающий производить управление);

Подготовку и передачу информации на АРМ по цифровому каналу Ethernet (о пожарном состоянии, работе АУПТ, загазованности, всех командах, выдаваемых самим пожарным контроллером) для архивирования и хранения информации;

Контроль основного и резервного питания ПК ГПА (с индикацией на ПУ и АРМ);

Формирование сигналов в САУиР ГПА:

«Загазованность ОД высокая;

«Загазованность ОН высокая;

«Загазованность ОД/ОН опасная;

«Двери ОД открыты»;

«Двери ОН открыты»;

«Двери ОМА открыты»;

«Пожар на ГПА»;

«Неисправность САУ ПО, КЗ и АУПТ».

-прием сигнала «ГПА в работе» от САУиР ГПА.

-формирование дискретных сигналов для выдачи на ПУ и прием сигналов с ПУ (от кнопок);

-других функции, согласно п. 9.1.1 HI lb 75-98, п. 12.1, 12.4, 13 и 14 СП 5.13130.2009 и п. 9 ГОСТ 12.3.046.

Все изменения сигналов, не зависимо от типов и направлений (входные или выходные) транслируются по цифровому каналу связи Ethernet на АРМ оператора и отображаются на видеокадре (мнемосхеме, окнах, табло в виде информационных сообщений), при этом информационные сообщения начинаются с названия объекта защиты.

Требования к АРМ.

Отображение оперативной информации о пожарном состоянии защищаемых отсеков укрытия ГПА, состоянии оборудования САУ ПО, КЗ и АУПТ в полном объеме должно быть реализовано АРМ оператора, которое выполняется на базе ПЭВМ промышленного исполнения.

АРМ должно обеспечивать выполнение следующих функций:

Прием входной информации от пяти ПК ГПА по каналу Ethernet и обработку ее в соответствии с заложенным рабочим программным обеспечением;

Предоставление текущей и ретроспективной информации на мониторе ПЭВМ АРМ;

Отображение информации об уровне загазованности отсеков ГПА;

Отображение обработанной информации на экране видеомонитора о пожарной ситуации и состояния оборудования в защищаемых помещениях;

Выдачу звуковых сигналов при неисправности ПК ГПА, неисправности оборудования САУ ПО, КЗ и АУПТ защищаемых помещений, предупреждении о тревоге, пожаре и загазованности, поступлении ОГВ;

Кроме того, на АРМ должен вестись журнал событий и их архивирование, формирование отчетных данных (по требованию оператора).

АРМ является потребителем электроэнергии 1 категории (по ПУЭ). Электропитание должно подаваться на два ввода:

Основной - напряжением переменного тока (220+22; - 33) В, частотой (5 0± 1) Гц, 1 категории;

Резервной - напряжением постоянного тока (220+22; - 33) В, кроме того должен иметься встроенный источник бесперебойного питания (ИБП) для обеспечения бесперебойного электропитания рабочей станции при исчезновении основного и резервного питания, в течение 30 минут.

Переход с основной сети на резервную и обратно должен осуществляться автоматически без потери работоспособности АРМ, при этом, оператору должно выдаваться сообщение о переходе с основного на резервное электропитание. Одновременное отключение обеих сетей должно быть исключено.

В состав АРМ должны входить следующие технические средства:

Системный блок промышленного исполнения;

Монитор (TFT не менее 17»), удовлетворяющий требованиям норм безопасности ТСО 03 или ТСО 06;

Клавиатура (с поддержкой русского языка);

манипулятор типа «мышь»;

звуковые колонки.

Способы отображения информации и действия оператора должны быть оптимально настроены с учетом требований к процессу при помощи различных конфигураций программного обеспечения


1.3 Выполняемые функции системы автоматического управления ПО и КЗ на агрегатах типа ГПА-Ц-16


Объектами защиты САУ ПО, КЗ являются укрытия ГПА №1,2,3, каждое укрытие состоит из следующих помещений:

Отсек двигателя (ОД);

Отсек нагнетателя (ОН);

отсеке маслоагрегатов (ОМА);

отсек автоматики (OA);

отсек пожаротушения (ОПТ);

отсек всаса воздуха (ОВ);

приборный контейнер автоматики (ПКА).

САУ ПО и КЗ представляет собой единый комплекс и выполняет функции пожарообнаружения, контроля загазованности, оповещения о пожаре, загазованности, а также информационные функции.

Режим работы САУ ПО и КЗ круглосуточный и непрерывный с остановками на проведение регламентных работ.

Программно-технический комплекс обеспечивает работу системы в автоматическом режиме и решает следующие задачи:

Прием сигналов от пожарных извещателей (ПИ);

Прием сигналов от детекторов загазованности (ДЗ);

обеспечение электропитанием активных ГШ и ДЗ;

Выдачи управляющих сигналов на световые и звуковые оповещатели, ПУ;

контроль цепей ПИ;

Контроль загазованности (концентрации метана в контролируемых отсеках);

Непрерывный контроль работоспособности системы и ее составных частей;

Формирование и контроль цепей сигналов управления световой и звуковой сигнализацией оповещения о пожаре и загазованности;

Формирование сигналов в САУи Р ГПА;

прием сигнала «ГПА в работе» от САУи Р ГПА;

сбор, регистрацию и отображение на видеокадрах оперативной информации о состоянии защищаемых САУ ПО и КЗ помещений ГПА №1… №5 при помощи АРМ оператора;

формирование отчетных данных по требованию оператора при помощи АРМ оператора;

обновление и хранение статистической информации с месячным интервалом при помощи АРМ оператора.


2. Специальная часть


2.1 Состав системы автоматического управления


В состав САУ ПО и КЗ входит:

Комплекс технических средств САУ ПО, КЗ и АУПТ ГПА №1… ГПА №3 состоящий из:

автоматических установок пожарной сигнализации и оборудования пожарной сигнализации (АУПС) укрытия ГПА;

системы контроля загазованности (СКЗ) укрытия ГПА;

системы оповещения (СО) укрытия ГПА;

автоматической установки пожаротушения (АУПТ);

система управления, состоящая из:

пожарных контроллеров (трех ПК ГПА) с индивидуальными панелями управления (3 ПУ ПК ГПА);

оборудования автоматизированного рабочего места оператора (АРМ).

Состав ПО и КЗ.

Отсеки ОД, ОН, ОМА укрытия ГПА оборудованы средствами оповещения людей о работе АУПТ.

Для светового и звукового оповещения о работе АУПТ применено оборудование в составе:

оповещатели пожарные звуковые взрывозащищенные с расширенным диапазоном температуры эксплуатации ExOl 1113-2В-Р, производства ЗАО НПК «Эталон» (г. Волгодонск);

Оповещатели пожарные звуковые взрывозащищенные повышенной мощности ExOl И13-2В-ПМ, производства ЗАО НПК «Эталон» (г. Волгодонск);

оповещатели пожарные световые взрывозащищенные повышенной мощности ЕхОППС - 1В-ПМ, производства ЗАО НПК «Эталон» (г. Волгодонск);

Оповещатели пожарные световые взрывозащищенные с расширенным диапазоном температуры эксплуатации ExOl И 1С-1В-Р, производства ЗАО НПК «Эталон» (г. Волгодонск).

При запуске АУПТ (или несанкционированном поступлении ОГВ) включаются световые оповещатели «Газ - уходи!» и «Газ - не входить!» и звуковые оповещатели внутри и у входов в защищаемые отсеки.

При отключении режима автоматического пуска, включаются световые оповещатели «Автоматика отключена» снаружи у входов в защищаемые помещения.

Управление оповещателями и контроль их состояния осуществляется от ПК ГПА, так же контроль состояния осуществляться оператором от кнопок ПУ.

При проектировании автоматики контроля положения дверей (открыто / закрыто) применены выключатели путевые ВПВ-1А21ХЛ1 производства ОАО «ВЭЛАН».


2.2 Система контроля загазованности


Система контроля загазованности обеспечивает:

Непрерывный контроль за уровнем загазованности СН4 отсека двигателя (ОД) и отсека нагнетателя (ОД) укрытия ГПА; формирование сигналов тревожных извещений (10% и 20% от нижнего концентрационного предела взрываемости (НКПВ) при превышении загазованности СН4;

Передачу аналоговых и дискретных сигналов в ПК ГПА;

Выдачу сигналов «Загазованность высокая ОД», «Загазованность высокая ОН» «Загазованность опасная ОД/ОН» в САУиР ГПА.

При проектировании СКЗ применены:

Инфракрасный детектор углеводородных газов PIRECL производства ЗАО «Спецпожинжиниринг» (г. Москва);

Каталитический датчик CGS в комплекте с контроллером Инфинити U9500A производства ЗАО «Спецпожинжиниринг» (г. Москва).

Газоанализатор PIRECL и каталитический датчик CGS размещаются в местах наиболее вероятного выделения или скопления газа (паровоздушной среды СН4). Диапазон измерения указанных датчиков от 1% до 100% нижнего концентрационного предела воспламенения.

Газоанализатор PIRECL непрерывно контролируют уровень загазованности и формирует один аналоговый сигнал и дискретные сигналы о достижении высокого уровня загазованности (10% НКПВ) и опасного уровня загазованности (20% НКПВ).

Посредством аналогового сигнала 4-20mА газоанализатор PIRECL передает информацию о величине уровня загазованности на ПК ГПА.

Каталитический датчик CGS непрерывно контролируют уровень загазованности и формируют один аналоговый сигнал, который поступает в контроллер Инфинити U9500A, который в свою очередь выдает на ПК ГПА аналоговый сигнал (4-20шА) и дискретные сигналы «Загазованность высокая», «Загазованность опасная», соответствующих 10% и 20% НКПВ.

ПК ГПА постоянно транслирует сигналы текущего уровня загазованности на АРМ и формирует сигналы на включение средств оповещения, установленных в соответствующих помещениях, о превышении допустимого уровня загазованности. Сигналы загазованности отличаются от сигналов о пожаре.

Исполнения технических средств СКЗ (детекторов, линий связи) соответствует условиям их эксплуатации (в частности - во взрывоопасной зоне класса В-1а по ПУЭ).

Электропитание технических средств СКЗ осуществляется от ПК ГПА.


2.3 Эксплуатация систем автоматического контроля, управления, сигнализации и регулирования объектов газовой промышленности

сигнализация автоматический управление контроллер

Эффективная эксплуатация комплекса технических средств компрессорных станций возможна только при надежном функционировании автоматизированной системы управления технологическими процессами КС (АСУ ТП КС).

В состав АСУ ТП КС входят:

Системы автоматического управления и регулирования (САУ и Р) ГПА, в том числе устройства представления информации (УПИ) и пожарный контроллер (ПК 4510) автоматической системы пожаротушения (АСП);

система централизованного контроля и управления КС, включающая в себя: автоматизированное рабочее место диспетчера КС (АРМД КС), мнемощит КС и шкаф общестанционной сигнализации и управления (ШОС);

Системы безопасности КС, включающие в себя: систему управления кранами узла подключения, общестанционными и охранными кранами (ЩТУ-11М), систему пожарной сигнализации, в т.ч. устройство представления информации (УПИ) АСП, систему контроля загазованности и ключ аварийной остановки станции (КАОС);

САУ и Р АВО (аппараты воздушного охлаждения) газа;

САУ вспомогательных объектов.

система линейной телемеханики (СЛТМ).


Рисунок - 1. Типовая структурная схема АСУ ТП КС.


Организация эксплуатации осуществляется целым рядом эксплуатационных служб, входящих в состав линейных управлений. Среди них основными являются службы:

газокомпрессорная, обеспечивающая организацию эксплуатации механической части основного технологического оборудования и трубных обвязок КС, а также всего вспомогательного оборудования, участвующего в транспорте газа;

энерговодоснабжения, обеспечивающая эксплуатацию электротехнического оборудования КС, а также систем: тепловодоснабжения и промышленной канализации;

контрольно-измерительных приборов и АСУ, обеспечивающая эксплуатацию средств автоматизации основного и вспомогательного оборудования КС и телемеханики.

Производственные задачи, права и обязанности инженерно-технических работников этих служб определяются положениями и должностными инструкциями. Непосредственное управление и контроль за режимом работы КС осуществляется сменным персоналом и центральной диспетчерской службой (ЦДС) объединения.

Для обеспечения нормальной эксплуатации должны быть обязательно выполнены следующие условия:

к эксплуатации ГПА должен допускаться только персонал, прошедший специальное обучение, сдавший экзамен и получивший разрешение на самостоятельную работу;

эксплуатационный персонал должен быть обеспечен необходимой технической документацией: инструкциями заводов-изготовителей, проектно-исполнительной документацией, соответствующими инструкциями по обслуживанию оборудования КС, в которые своевременно должны вноситься изменения и дополнения;

эксплуатационный персонал должен быть обеспечен необходимыми оборотными средствами и запасными частями и приспособлениями (ЗИП) для поддержания оборудования в соответствии с техническими условиями (ТУ) заводов-изготовителей.


2.4 Эксплуатация аппаратно-программного обеспечения микропроцессорной техники


Для обеспечения надежного и непрерывного контроля состояния и управления пожаротушением укрытий ГПА №1… №5 КС «зензели» КЦ-4 полная информация о состоянии и работе оборудования САУ ПО, КЗ и АУПТ, должна предоставляться оператору.

Система отображения состояния САУ ПО, КЗ и АУПТ должна строиться на основе видеокадров - фрагментов мнемосхем. Система отображения должна содержать:

Основной видеокадр - содержащий общую схему площадки КЦ-4 КС «зензели» (объекта) и основные контролируемые параметры, выводящиеся на экран автоматически в процессе функционирования системы;

Дополнительные видеокадры (окна) - содержащие с разной степенью детализации объектов защиты, помещений и т.д., выводящиеся на экран по запросу оператора.

Система отображения должна иметь контекстную систему подсказки.

Для построения видеокадров должны использоваться техника окон и цветов, с одновременным использованием текста и графики, а также другие возможности, предоставляемые программно - аппаратными средствами ПЭВМ.

Основной видеокадр должен содержать:

Поле меню;

поле мнемосхемы;

окно строкового сообщения.


Мнемосхема ПО и КЗ ГПА


Для предоставления оператору более подробной информации должны быть предусмотрены переходы на мнемосхемы укрупненного вида - дополнительные видеокадры. На дополнительных видеокадрах должно быть представлено более детальное описание защищаемых ГПА, с указанием места расположения пожарных извещателей, оборудования загазованности, оборудования оповещения и т.д.

Дополнительные видеокадры должны содержать:

Поле меню;

Поле мнемосхемы (или графика, таблицы);

Окно строкового сообщения;

Поле возврата.

Каждый из объектов контроля и управления, указанный на экране монитора, должен иметь окраску, однозначно определяющую состояние объекта.

Например:

При нормальном состоянии - зеленую;

При наличии неисправности (КЗ, обрыв шлейфа, внутренняя неисправность оборудования) - желтую;

в аварийном состоянии - красную (тревога, высокая загазованность - мигание, пожароопасная загазованность - непрерывное горение);

В отключенном состоянии - серую.

При отсутствии информации о пожаре, загазованности и отсутствии действий оператора при отключении системы звукового оповещения на ПУ, все помещения должны отображаться на мнемосхеме без изменений - контур черного цвета на сером фоне.

В случае отключения звукового оповещения на ПУ, соответствующие помещения должны помечаться пульсирующим контуром черного цвета на сером фоне, а во всплывающей подсказке при наводке курсором должны отображаться данные об отключении.

При появлении сигнала «Пожар» изображение помещения, в котором системой обнаружен пожар, и сигнал «Пожар» в левой части экрана, должны помечаться закрашенным периметром красного цвета. При нажатии во всплывающей подсказке должна выдаваться информация о пожаре и номере сработавшего извещателя (извещателей).

При неисправности средств пожарообнаружения или оповещения в защищаемых помещениях последние, совместно с сигналами «Неисправность…», в левой части экрана, должны помечаться пульсирующим закрашенным периметром желтого цвета. При нажатии во всплывающей подсказке должна выдаваться информация о наименовании шлейфа и наименовании неисправного средства пожарообнаружения, оповещения или контроля загазованности.

При появлении сигнала «Загазованность высокая» изображение помещения, в котором сработал газоанализатор, и сигнал «Загазованность высокая / опасная», в левой части экрана, должны помечаться пульсирующим закрашенным периметром синего цвета. При нажатии во всплывающей подсказке должна выдаваться информация о загазованности и номер сработавшего детектора газа.

При появлении сигнала «Загазованность опасная» изображение помещения, в котором сработал детектор газа, и сигнал «Загазованность высокая / опасная», в левой части экрана, должны помечаться закрашенным периметром синего цвета. При нажатии во всплывающей подсказке должна выдаваться информация о загазованности и номер сработавшего газоанализатора.

Система должна иметь возможность задавать различные цветовые схемы кодирования для различных объектов.

Окончательно все цветовые решения должны быть согласованы с заказчиком при наладке и пуске системы.

Видеокадр любого защищаемого объекта в отдельности должен вызываться по требованию оператора. При приходе сигналов («Тревога», «Пожар», «Неисправность» и «Высокая загазованность») должен автоматически выбираться видеокадр того объекта, от которого пришел данный сигнал. Сигнал должен отображаться изменением цвета и миганием на видеокадре изображения соответствующего устройства, автоматическим вызовом информационного окна «Сигнализация» (для оперативного текстового представления информационного сообщения) и сопровождаться звуком до момента квитирования оператором пришедшего ему сообщения.

При возникновении на объектах неисправности или аварийных ситуаций, независимо от вывода на экран основного или дополнительного видеокадра, в специальное поле экрана выводится сообщение о событии.

Управление вывода видеокадров и значений параметров должно осуществляться при помощи двух курсоров:

Программно реализованного курсора;

курсора, перемещаемого по экрану с помощью устройства «электронная мышь». Производные форматы вызываются при помощи программно реализованного курсора, совмещаемого с позицией соответствующих кнопок основного видеокадра. При установке курсора «электронная мышь» в поле возврата дополнительного видеокадра на экране автоматически выводится основной видеокадр.

Все события в САУ ПО, КЗ и АУПТ должны регистрироваться в журнале событий.

В журнал событий должны заноситься все получаемые и отработанные события с меткой времени. Просмотр журнала событий должен осуществляться по вызову, инициированному оператором.

Система должна обеспечивать ведение архивов данных, организованных следующим образом:

Текущий архив должен обеспечивать хранение всей текущей информации о состоянии системы (частота обновления - 1 машинный цикл); глубина хранения информации должна составлять не менее 4800 циклов).

Архив по событию - должен обеспечивать хранение информации о состоянии системы в случае аварийной ситуации (частота обновления - аварийное событие; глубина хранения информации не менее 300 событий).

Архив по событию должен содержать следующую информацию:

Архив аварий должен содержать информацию о пожарной опасности (при формировании сигнала «пожар») на объекте защиты. В указанный архив записывается дата, время, номер (номера) шлейфов извещателей (аналогично для сигналов «Загазованность»).

Архив неисправностей должен содержать информацию обо всех неисправностях в системе, с расшифровкой по направлениям, с указанием даты и времени.

Так же должны быть обеспечены подсистемы архиваций следующих данных:

Подсистема архивации останова. Предназначена для изучения причин и хода останова. Хранит в себе значения аналоговых параметров в ходе останова, а так же содержит дискретную информацию в виде протокола всех событий, произошедших за сутки до момента останова, а также заносит в протокол события, возникающие при отработке режима останова.

Подсистема архивации пуска . Предназначена для изучения хода пуска, также заносит в протокол события, возникающие при отработке режима пуска.

Подсистема архивации защит. Предназначена для изучения хода срабатывания автоматических защит.

Сменный журнал должен хранить записи о приемах смены. Каждая запись в журнале содержит дату и время приема смены, а также имя сменного инженера.

Кроме того, система управления должна обеспечивать распечатку следующих документов: суточные таблицы, распечатки текущих значений аналоговых параметров, суточные ведомости, протоколы проверки защит, кадры и протоколы останова, выписки из журнала событий, а также распечатки групповых графиков.


2.5 Датчики, применяемые в системе ПО и КЗ


Пожарная безопасность - общее состояние объекта, степень защищенности его от возникновения пожара, его предотвращение и локализация в случае опасности. На каждом объекте, вне зависимости от его предназначения, должны соблюдаться определенные меры пожарной безопасности. Это ряд мероприятий, организационных действий по обеспечению огнезащиты.

Пожаротушение будет эффективным, если охранно-пожарная сигнализация входит в общую интегрированную систему безопасности объекта, которая должна соответствовать существующим нормам и положениям. Выявить и устранить недочеты в системе пожаротушения позволит пожарный аудит. Наряду со всеми средствами защиты от посягательств на Ваше имущество или жизнь, средства, которыми обеспечивается защита от пожара, а именно системы пожарной сигнализации и пожаротушения, играют достаточно важную роль.

Учитывая то, что вокруг нас находится огромное количество электроприборов, на кухне мы используем технику, работающую на газу, а в частных домах и коттеджах вообще существуют источники открытого огня, наличие систем пожарной сигнализации является настоящей жизненной необходимостью. Только при их наличии возможно в определенной степени чувствовать себя в безопасности от возникновения пожара, или, в крайнем случае, минимизировать потери при его возникновении. Любая система пожарной безопасности, будь то пожаротушение либо просто сигнализация, направлена

·в первую очередь, на предупреждение пожара с целью минимизировать возможный ущерб имуществу,

·а главное, на избежание человеческих жертв.

Три основные задачи систем пожарной безопасности:

оповещение о возгорании,

выявление очага пожара при помощи специальных датчиков,

непосредственно тушение огня. Зачастую, задачу по тушению огня возлагают на автоматические комплексы, устанавливаемые на предприятиях.

Современные системы пожарной сигнализации подразделяются на адресные и неадресные. Так же их разделяют по типу срабатывания от одного или от двух извещателей. По требованиям ГПН пожарная сигнализация должна различать несколько состояний шлейфов, это такие состояния как: норма, обрыв, короткое замыкание, внимание и тревога.

Датчики системы пожарной сигнализации более подробно рассмотрены в статье «Пожарные извещатели». Здесь же отмечу следующее. Пожарные извещатели делятся на адресные и неадресные, по типу внешнего фактора, на который он реагирует при срабатывании, на одноразовые и многоразовые.

Одноразовые пожарные извещатели в современных системах пожарной сигнализации запрещены, это такие тепловые датчики как ДТЛ, ИП-104 и т.д. ИП-104 представлял собой два подпружиненных контакта спаянных между собой легкоплавким припоем (приближенным к эвтектическому составу). При нагревании до определенной температуры припой расплавлялся и контакты размыкались. На практике иногда такие извещатели восстанавливали, спаивая пластины снова, однако обычно их проще заменить на новые.

По типу внешнего фактора, на который срабатывают пожарные извещатели, датчики подразделяются на тепловые, дымовые и ручные. Иногда встречаются взрывозащищенные, искробезопасные пожарные извещатели, а так же специфической формы, например термошнур и специфического принципа действия - извещатель «Пламя», который анализирует спектр электромагнитных волн, в поисках спектра испускаемого открытым пламенем.

Современная пожарная сигнализация обеспечивает не только контроль за состоянием шлейфов но и при необходимости осуществляет следующие действия: выдачу тревожного сигнала на ПЦН МЧС (чаще всего посредством дополнительного прибора типа «Молния»), включение СЗУ (Свето-звукового устройства), отключение вентиляции, включение системы дымоудаления и подпора воздуха в лифтовых шахтах, отключение лифтов с опусканием кабины на первый этаж, включение свето-звуковых указателей «Выход», включение голосового оповещения о пожаре, запуск автоматического открывания дверей с электронными замками, запуск различных систем пожаротушения и т.д.

Адресная система пожарной сигнализации намного более надежна чем обычная, указывает конкретный сработавший пожарный извещатель, но она более дорогостоящая, что правда немного компенсируется тем, что в помещении допускается устанавливать минимум один пожарный извещатель вместо двух, как в обычной неадресной пожарной сигнализации.

Типы пожарных датчиков

Основные факторы, на которые реагирует пожарная сигнализация - это концентрация дыма в воздухе, повышение температуры, наличие угарного газа СО и открытый огонь. И на каждый из этих признаков существуют пожарные датчики.

Тепловой пожарный датчик реагирует на изменение температуры в защищаемом помещении. Он может быть пороговым, с заданной температурой сработки, и интегральным, реагирующим на скорость изменения температуры. Применяются в основном в помещениях, где не возможно использование дымовых датчиков.


Дымовой пожарный датчик реагирует на наличие дыма в воздухе. К сожалению, также реагирует на пыль и пары. Это самый распространенный тип датчиков. Используется повсеместно кроме курилок, запыленных помещений и комнат с влажными процессами.

Датчик пламени реагирует на открытое пламя. Используется в местах, где возможен пожар без предварительного тления, например столярные мастерские, хранилища горючих материалов и т.д.

Последнее изобретение в области противопожарных систем - это мультисенсорный извещатель. Разработчики уже давно были озадачены проблемой создания датчика, который бы рассматривал все признаки в совокупности, а, следовательно, более точно определял бы наличие пожара, на порядок, уменьшая ложные тревоги пожарной сигнализации.

Первыми были изобретены мультисенсорные датчики, реагирующие на совокупность двух признаков: дым и повышение температуры. Но развитие технологий не остановилось на этом и теперь уже используются датчики нового поколения, которой учитывают совокупность трех и даже всех четырех факторов. На сегодняшний день, многие фирмы уже выпускают системы пожарной защиты с мультисенсорными датчиками. Наиболее известные из них System Sensor, Esser, Bosch Security Systems и др.

Для повышения эффективности работы пожарка, как правило, оснащается ручными пожарными извещателями . Они обычно имеют вид закрытой прозрачной коробки с красной кнопкой и размещаются на стенах в местах, легкодоступных, чтобы в случае обнаружения пожара работник без труда мог оповестить все предприятие об опасности.


2.6 Расчет критериев взрывопожарной и пожарной опасности и определение категории помещения нагнетательных коллекторов газа


Исходные данные

Характеристика помещения:

Длина l = 30 м

Ширина b = 12 м

Высота h = 6 м

Расчетная температура воздуха tp = 35°С - абсолютная максимальная температура воздуха (для Ухты) согласно табл. 2 СНиП 23-01 .

Характеристика веществ и материалов, обращающихся (находящихся) в помещении:

Природный газ (по метану - СН4): горючий газ (ГГ).

Молярная масса: 16,043 кг/кмоль.

Низшая теплота сгорания: 50000 кДж/кг.

Характеристика технологического процесса:

Оборудование:

коллектор с газом производительностью 0,9 млн м3/сут (10,42 м3/с), объем трубопровода 7,05 м3, давление 55 кг/см2;

коллектор газа высокого давления, производительностью 0,9 млн м3/сут (10,42 м3/с), объем трубопровода до задвижек 1,65 м3, давление 75 кг/см2 (7355 кПа).

Отключение автоматическое, без резервирования, расчетное время отключения принимается согласно НПБ 105 (далее - НПБ) равным 120 с.

Расчет критериев взрывопожарной и пожарной опасности

За расчетную аварийную ситуацию принимаются разгерметизация коллектора газа высокого давления и выход в помещение горючего газа.

Определяется объем газа, поступившего в результате аварийной ситуации, м3:


где Vт - объем газа, вышедшего из трубопровода, м3:

т = V1т + V2т,

где V1т - объем газа, вышедшего из трубопровода до его отключения, м3;


где q - расход газа, м3/с;

Т - расчетное время отключения, с;т = 10,42120 = 1250 м3,т - объем газа, вышедшего из трубопровода после его отключения, м3;


где Р - давление в трубопроводе, кПа;- объем трубопровода до задвижек, м3.т = 0,011,657355 = 121,36 м3,

т = Vав = 1250 + 121,36 = 1371,36 м3.


Определяется масса выделившегося при аварии газа, кг:


где Vав - объем газа, поступившего в результате аварийной ситуации, м3;

г - плотность газа при расчетной температуре, кг/м3,= 1371,360,634 = 869,44 кг

Определяется избыточное давление взрыва, кПа:

При расчетной аварийной ситуации в помещение поступает горючий газ в количестве, достаточном для образования газовоздушной взрывоопасной смеси, создающей при сгорании избыточное давление взрыва Р больше 5 кПа, следовательно, помещение относится к взрывопожароопасной категории А.


3 Организация производства


.1 Организация работ службы КИПиА


Основное и вспомогательное технологическое, теплотехническое и энергетическое оборудование и технологические установки на предприятиях и магистральных газопроводах должны оснащаться устройствами теплотехнического контроля, автоматического управления и технологической защиты в соответствии с утвержденным проектом.

Эксплуатацию устройств контроля, автоматического управления и защиты осуществляет персонал цеха (службы, лаборатории) или специализированных организаций, специально обученный и допущенный к соответствующим работам.

Находящиеся в эксплуатации устройства защиты и автоматики должны быть включены в работу постоянно, за исключением тех устройств, которые по принципу действия выводятся из работы при отключении оборудования.

В процессе эксплуатации особое внимание следует обращать на наличие питания устройств защиты, автоматического управления и контроля, а также на исправность предохранителей и автоматов защиты сети во вторичных цепях.

Устройства технологической защиты должны проверяться в сроки, установленные графиком ППР и производственными инструкциями. Об отключении устройств защиты для проверки должна делаться запись в оперативном журнале. В случае необходимости отключение должно проводиться по наряду.

Осуществлять ремонтные и наладочные работы в работающих цепях защиты запрещается.

Значения уставок и выдержки времени срабатывания технологических защит устанавливаются заводами-изготовителями и проектными организациями для каждого вида защит, уточняются во время испытаний оборудования и последующей его эксплуатации. Средства защиты, имеющие устройства для изменения уставок, должны быть опломбированы. Пломбы могут быть сняты только работником цеха (лаборатории) службы КИП и А с разрешения руководства предприятия, о чем делается запись в журнале.

Периодический контроль исправности или опробования средств КИП и А в случаях, когда осуществление этих операций требуется по условиям эксплуатации, должен проводиться дежурным персоналом по специальной инструкции. Результаты записывают в специальном журнале.

Вновь смонтированные устройства автоматического управления и защиты, средства измерений перед вводом их в эксплуатацию должны пройти наладку и приемные испытания вместе с комплексным оборудованием в соответствии с требованиями настоящих Правил.

Устройства автоматики и контроля не должны подвергаться вибрации, влиянию агрессивных сред, воздействию электромагнитных полей, превышающих уровни, допускаемые техническими условиями.

Температура в местах установки щитов шкафного типа должна быть не выше 50°С и не ниже 5°С. Щиты должны быть тщательно уплотнены, иметь постоянное освещение, штепсельные розетки на напряжение 220 В (при необходимости - 12 В) и подвод сжатого воздуха, если температуры окружающей среды и внутри щитов равны или превышают 50°С.

Конструктивное исполнение средств защиты, автоматики и контроля, устанавливаемых во взрывоопасных зонах, должно соответствовать требованиям главы VII-3 «Правил устройства электроустановок».

Щиты, переходные коробки и сборные кабельные ящики должны быть пронумерованы, все зажимы и подводимые к ним провода, импульсные линии контрольно-измерительных приборов и автоматических регуляторов - иметь маркировку, органы управления и сигнализации, измерительные устройства - надписи, разъясняющие их назначение.

Сопротивление изоляции относительно земли электрически связанных цепей защиты, автоматики и всех остальных вторичных цепей для каждого присоединения должно поддерживаться на уровне не ниже 1 МОм; вторичных цепей с применением устройств напряжения 60 В и ниже, нормально питающихся от отдельного источника, - на уровне не ниже 0,5 МОм. В первом случае сопротивление изоляции измеряется мегомметром на напряжение 1000-2500 В, во втором - мегомметром на напряжение 500 В.

При первичном включении и первой плановой проверке сопротивления изоляции относительно земли электрически связанных цепей защиты, систем автоматики и всех других вторичных цепей для каждого присоединения изоляция должна испытываться напряжением 1000 В переменного тока в течение 1 мин. В дальнейшем изоляцию испытывают один раз в 3 года напряжением 1000 В переменного тока, а при сопротивлении изоляции 1 МОм и выше - выпрямленным напряжением 2500 В с помощью мегомметра или специальной установки.

Исполнительные устройства, средства измерения и автоматики, поступившие к месту монтажа, следует хранить в закрытом сухом помещении. Перед монтажом оборудование подвергают внешнему осмотру и ревизии в соответствии с требованиями настоящих Правил.

При работе с образцовыми и рабочими средствами измерений ртутного наполнения необходимо соблюдать правила безопасности при работе со ртутью, изложенные в настоящих Правилах.

Ответственность за сохранность и чистоту внешних частей устройств автоматики, защиты и средств измерений несет оперативный персонал цехов и служб, в которых установлены эти устройства.

Технические средства, как правило, должны ремонтировать работники цехов (лабораторий, служб) КИП и А предприятий или специализированных организаций одновременно с ремонтом основного оборудования по рекомендациям заводов-изготовителей и положений о ППР.

Ремонт регулирующих органов и сочленение их с исполнительными механизмами редукторов, электроприводов, а также дроссельных органов расходомеров, арматуры, штуцеров и т.п. должен осуществлять персонал, ведущий ремонт основного оборудования. В установке на место и приемке отремонтированной аппаратуры принимают участие работники цеха (лаборатории) КИП и А.


3.2 Плановые и профилактические работы по ремонту и обслуживанию систем и средств автоматизации


Текущие и капитальные ремонты, профилактические испытания электродвигателей и электроприборов, запорных и регулирующих органов, входящих в комплект устройств автоматического регулирования, защиты и дистанционного управления, должны проводиться цехами (службами, лабораториями) КИП и А или специализированными организациями.

Перемотку электродвигателей, соленоидов и т.д. должны выполнять ремонтные организации по заявкам эксплуатирующих организаций.

Неисправности, обнаруженные при техническом обслуживании, необходимо устранять в соответствии с указаниями, изложенными в таблице, производственными инструкциями на установку пожаротушения и правилами техники безопасности.


Литература

  1. А.С. Клюев «Наладка средств измерений и систем технического контроля» Справочное пособие Москва Энергоатомиздат 1990 г.
  2. А.С. Клюев «Проектирование систем автоматизации технологических процессов» Справочное пособие Москва Энергия 1980 г.

З.А.С. Клюев «Монтаж средств измерений и автоматизации» Справочник. Москва Энергоатомиздат 1988 г.

Справочник по автоматизации в газовой промышленности под редакцией В.В. Дубровского, Москва, Недра. 2002 г.

Номенклатурные справочники по датчикам и вторичным приборам

Построение вычислительных систем на базе перспективных микропроцессоров. Д. Фрир. Москва, Мир.


Репетиторство

Нужна помощь по изучению какой-либы темы?

Наши специалисты проконсультируют или окажут репетиторские услуги по интересующей вас тематике.
Отправь заявку с указанием темы прямо сейчас, чтобы узнать о возможности получения консультации.

Агрегат ГПА-Ц-16 предназначен для транспортирования природного газа по магистральным газопроводам при рабочем давлении 56-76 кг/кв.см. На дожимных компрессорных станциях ГПА работает с давлением на выходе до 41 кг/кв.см со сменной проточной частью нагнетателя.

ГПА полностью автоматизирован, устанавливается в индивидуальном контейнере и может эксплуатироваться при температуре окружающего воздуха от -55 до +45 град.С.

Агрегат состоит из отдельных функционально завершенных блоков и сборочных единиц полной заводской готовности, стыкуемых между собой на месте эксплуатации.

В состав ГПА входят:

­ турбоблок с газотурбинным двигателем НК-16СТ;

­ воздухоочистительное устройство (ВОУ);

­ шумоглушитель всасывающего тракта;

­ всасывающая камера;

­ промежуточный блок;

­ блок вентиляции;

­ два блока маслоохладителей;

­ выхлопной диффузор;

­ выхлопная шахта;

­ шумоглушители выхлопного тракта;

­ блок нагнетателя с центробежным нагнетателем НЦ-16;

­ блок автоматики;

­ блок маслоагрегатов;

­ блок фильтров топливного газа;

­ система подогрева циклового воздуха;

­ система пожаротушения;

­ система обогрева контейнера.

Блоки агрегата

ТУРБОБЛОК включает в себя следующие сборочные единицы: контейнер, приводной двигатель НК-16СТ, установленный на подмоторной раме. Кроме того, в турбоблоке размещены отдельные сборочные единицы маслосистемы, системы обогрева, автоматического пожаротушения, обогрева циклового воздуха и автоматического управления агрегатом.

Контейнер турбоблока является помещением для размещения основных сборочных единиц и систем агрегата. Обеспечивает определенный микроклимат для их эксплуатации и необходимые условия труда для обслуживающего персонала в период проведения ремонтных и регламентных работ. Контейнер при помощи герметичной перегородки разделен на два изолированных помещения - отсек двигателя и отсек нагнетателя. Вентиляция отсека двигателя осуществляется вентиляторами, установленными в блоке вентиляции. Вентиляция отсека нагнетателя осуществляется вентилятором, установленным в верхней части этого отсека.

ВОЗДУХООЧИСТИТЕЛЬНОЕ УСТРОЙСТВО предназначено для очистки от пыли и других механических включений циклового воздуха, поступающего из атмосферы в компрессор двигателя. ВОУ состоит из камеры, фильтрующих элементов, короба отсоса пыли, вентиляторов отсоса пыли, байпасных клапанов и решеток для подогрева циклового воздуха. Очистка воздуха производится в инерционно-жалюзийных сепараторах засчет резкого поворота потока в фильтрующих элементах. На задней стенке камеры размещены два байпасных клапана (БК). БК открываются автоматически при достижении разрежения в камере ВОУ 80 мм вод.ст. При снижении разрежения до 50 мм вод.ст. клапаны закрываются.

КАМЕРА ВСАСЫВАНИЯ служит для направления очищенного в ВОУ атмосферного воздуха к осевому компрессору двигателя. В проемы каркаса камеры установлен шумоглушитель, представляющий собой специальные щиты, заполненные теплоизоляционными звукопоглощающими матами из супертонкого базальтового волокна. В центральном проеме стенки установлены двустворчатые ворота, а на задней стенке - одностворчатые. Ворота служат для закатки и выкатки двигателя при его замене.

Рис. 1.33. Газоперекачивающий агрегат ГПА-Ц-16 (общий вид)

1 – камера всасывания; 2 – шумоглушители всаса; 3 – воздухоочистительное устройство; 4 – система подогрева циклового воздуха; 5 – утилизатор; 6 – шумоглушители выхлопа; 7 – диффузор; 8 – опора выхлопной части; 9 – турбоблок 10 – блок маслоагрегатов.

БЛОК ПРОМЕЖУТОЧНЫЙ предназначен для формирования равномерного потока воздуха непосредственно перед входным направляющим аппаратом осевого омпрессора двигателя. Блок состоит из каркаса и патрубка круглого сечения, выполненного из листовой нержавеющей стали.

Рис. 1.34. Газоперекачивающий агрегат ГПА-Ц-16 (компановка)

1 – камера сгорания; 2 – шумоглушители; 3 – воздухоочистительное устройство;

4 – блок с вентилями; 5 – промежуточный блок; 6 – патрубок; 7 – отсек двигателя:

8 – двигатель НК-16СТ; 9 – выхлопная улитка; 10 – шумоглушители выхлопа;

11 – диффузор; 12 – герметическая перегородка; 13 – промежуточный вал;

14 – гидроаккумулятор; 15 – нагнетатель НЦ-16; 16 – отсек нагнетателя; 17 – маслобак нагнетателя.

ВЫХЛОПНОЕ УСТРОЙСТВО с шумоглушением служит для выброса выхлопных азов и снижения шума выхлопа двигателя. Устройство состоит из диффузора и шумоглушителя. Диффузор предназначен для плавного снижения скорости выхлопных газов и представляет собой цельносварную конструкцию, состоящую из каркаса, внутренние проемы которого заполнены звукопоглощающим материалом. Шумоглушитель пластинчато-щелевого типа. Пластины имеют обтекаемую форму. Сварной каркас пластины выполнен из гнутых профилей и обшит с двух сторон перфорированным стальным листом. Пространство между листами заполнено звукопоглощающим материалом.

БЛОК МАСЛООХЛАДИТЕЛЕЙ предназначен для охлаждения масла, циркулирующего в системах смазки и уплотнения агрегата. Компоновка ГПА предусматривает установку двух блоков, в каждом из которых установлено по два аппарата воздушного охлаждения масла.

БЛОК ВЕНТИЛЯЦИИ предназначен для размещения оборудования, обеспечивающего вентиляцию отсека двигателя и просос атмосферного воздуха через маслоохладители при отсутствии электроэнергии. Блок вентиляции включает в себя каркас, вентиляторы, патрубок и заслонки с гидроприводом. Центробежные вентиляторы подают очищенный воздух, отбираемый из отсека шумоглушителя ВОУ. Поворотные заслонки, предназначенные для открытия прохода, соединяющего блок вентиляции с всасывающим трактом двигателя, при этом закрыты. При отключении вентиляторов вентиляция отсека двигателя осуществляется за счет прососа воздуха из турбоблока через открытые заслонки, остановленные вентиляторы и далее на всас двигателя. Управление заслонками производится при помощи гидропривода.

Рис. 1.35. Газоперекачивающий агрегат ГПА-Ц-16 (схема)

БЛОК МАСЛОАГРЕГАТОВ предназначен для размещения маслоагрегатов и арматуры маслосистемы, что позволяет производить их обслуживание при работе ГПА. Для вентиляции блока в нем предусмотрен вентилятор.

БЛОК АВТОМАТИКИ служит для размещения приборных щитов и другого оборудования систем автоматического управления ГПА.

БЛОК ФИЛЬТРОВ ТОПЛИВНОГО ГАЗА предназначен для очистки газа от возможных загрязнений в трубопроводах между станционным блоком подготовки топливного и пускового газа и входным в камеру сгорания двигателя. В блоке установлено два фильтра, обвязка которых позволяет включать в работу фильтры поочередно или оба одновременно. Степень фильтрации 10 мкм.

БЛОК ПОЖАРОТУШЕНИЯ служит для размещения установки автоматического газового пожаротушения. Автоматическая система пожаротушения обеспечивает противопожарную защиту отсеков двигателя и нагнетателя за счет своевременного обнаружения очага возгорания и последующего подавления его путем автоматической подачи огнегасящего вещества хладона 114В2.

СИСТЕМА ОБОГРЕВА предназначена для разогрева агрегата в холодное время года перед пуском и для обеспечения нормальных климатических условий при работе приборов и оборудования, установленных в отсеках контейнера. Обогрев осуществляется горячим воздухом, отбираемым от работающего двигателя за компрессором высокого давления (температура 280 град.С). Отбираемый горячий воздух поступает в станционную систему обогрева, которая объединяет в единую сеть системы обогрева всех агрегатов, установленных на компрессорной станции. Обогрев ГПА при отсутствии в станционной сети горячего воздуха осуществляется от моторных подогревателей типа УМП-350.

СИСТЕМА ПОДОГРЕВА ЦИКЛОВОГО ВОЗДУХА предназначена для предотвращения обледенения всасывающего тракта двигателя в диапазоне температур атмосферного воздуха от +7 до -10 град.С. Подогрев циклового воздуха осуществляется подачей на вход воздухоочистительного устройства горячих газов из выхлопной шахты агрегата. Газы эжектируются сжатым воздухом, отбираемым из компрессора низкого давления двигателя. Горячая газовоздушная смесь направляется на распределительную решетку, установленную на входе в ВОУ

Газоперекачивающие агрегаты (ГПА) предназначены для использования на линейных компрессорных станциях магистральных газопроводов, дожимных компрессорных станциях и станциях подземных хранилищ газа, а также для обратной закачки газа в пласт при разработке газоконденсатных месторождений. Cистема автоматического управления некоторыми газоперекачивающими агрегатами (САУ-А), выполненная с использованием достижений микропроцессорной техники, обеспечивает работу агрегатов в автоматическом режиме, что позволяет отказаться от постоянного присутствия обслуживающего персонала около агрегата. Работа обслуживающего персонала в процессе эксплуатации агрегатов заключается в проведении регламентных работ по его обслуживанию, периодическому контролю параметров и состояния. Конструкция агрегатов позволяет осуществлять осмотр, а также замену некоторых элементов без его остановки. При разработке агрегатов используются современные системы обработки данных и автоматизированного проектирования. Высокое качество изготовления газоперекачивающих агрегатов обеспечивается применением прогрессивных технологических процессов. В процессе производства агрегаты подвергаются комплексным испытаниям, что позволяет обеспечить эксплуатационные характеристики агрегатов, а также надежность и безопасность их работы.

Газотурбинный газоперекачивающий агрегат включает в себя газотурбинную установку, центробежный нагнетатель природного газа, выхлопное устройство, системы топливную и пусковые, масляную, автоматического управления, регулирования и защиты, охлаждения масла, гидравлического уплотнения нагнетателя.

Из большого числа возможных схем газотурбинных установок на газопроводах наибольшее распространение получили установки простого цикла, выполненные без регенерации или с регенерацией тепла выхлопных газов, с независимой силовой турбиной низкого давления ("с разрезным валом") для привода нагнетателя газа.

Большая часть типоразмеров ГТУ для привода нагнетателей выполнены по одинаковой конструктивной схеме -- с "разрезным валом" и силовой турбиной низкого давления, поэтому их характеристики могут быть с достаточной точностью обобщены в приведенной относительной форме, т е. в виде зависимостей приведенных параметров, отнесенных к номинальным значениям.

Оборудование ГПА выполняется в виде блочных конструкций, обеспечивающих транспортировку железнодорожным, водным или специальным автомобильным транспортом (масса блоков обычно не превышает 60--70 т). Блоки должны изготавливаться готовыми к монтажу и проведению пусконаладочных работ без их разборки и ревизии. Наружные трубопроводы и электрические коммуникации, соединяющие блоки, должны быть сведены к минимуму и иметь простые соединения.

Система автоматического управления ГПА должна обеспечивать:

Автоматический пуск, нормальную и аварийную остановку агрегата, регулирование и контроль технологических параметров ГТУ и нагнетателя-

Предупредительную и аварийную сигнализацию,

Защиту ГПА на всех режимах работы,

Связь агрегата с цеховой системой автоматического регулирования и управления,

Возможность дистанционного изменения режима ГПА от цеховой и станционной систем управления.

ГПА должен обеспечить работу при давлении газа на выходе из нагнетателя равном 115% от номинального (для проведения испытания газопровода), при суммарной продолжительности этого режима не более 200 ч/год. Пуск ГПА осуществляется, как правило, с предварительным заполнением контура нагнетателя технологическим газом рабочего давления.

Комплексное воздухоочистительное устройство входного тракта ГТУ должно обеспечить кондиционность циклового воздуха на входе компрессора и шумовую защиту в различных условиях эксплуатации.

Противообледенительные устройства могут включать в себя сигнализацию обледенения, системы подогрева горячим воздухом элементов входного тракта и компрессора, всей массы циклового воздуха подмешиванием продуктов сгорания, отбираемых после турбины, подмешиванием воздуха из компрессора (регенератора) или подмешиванием горячей смеси воздуха и продуктов сгорания.

Конструкция ГПА должна обеспечить целый ряд требований, соответствующих действующим стандартам и нормам взрывобезопасности, взрывопреду- преждения и взрывозащиты, пожарной безопасности, к вибрации, шумовым показателям и тепловыделениям на рабочих местах и в окружающей среде, к температуре, влажности и подвижности воздуха рабочей зоны в зданиях для ГПА

Высота дымовой трубы ГТУ выбирается из расчета рассеивания токсичных веществ, содержащихся в отработавших газах, до предельно допускаемых концентраций в приземном слое в соответствии с санитарными нормами.

Газоперекачивающий агрегат ГПА-Ц-16 на базе авиационного привода НК-16СТ в блочно-контейнерном исполнении предназначен для перекачки природного газа по магистральным газопроводам и спроектирован на рабочее давление нагнетателя 7,5 и 9.9 МПа (соответственно модификации ГПА-Ц-16/76 и ГПА-Ц-16/100). Рабочее давление на выходе из нагнетателя определяется лишь конструкцией закладных элементов проточной части нагнетателя (рабочие колеса, диффузоры, кольца), для которых предусмотрена замена в конструкции агрегата: таким образом, агрегат ГПА-Ц-16 полностью унифицирован и представляет собой конструкцию, состоящую из окончательно собранных функциональных блоков и систем, поставляемых на компрессорные станции в полной заводской готовности.

Конструкция блочного комплектного автоматизированного агрегата ГПА-Ц-16 предусматривает осуществление стабильной работы агрегата на компрессорной станции при перепадах температуры окружающей среды от 218К (-55°С) до 318К (+45°С) (климатическое исполнение "XЛ" категории размещения 1 по ГОСТ 15150-69).

Конструктивно агрегат представляет собой установку, все оборудование которой размешено в отдельных транспортабельных блоках, представлен на рисунке 2. На месте эксплуатации осуществляется монтаж агрегата на монолитном железобетонном фундаменте.

Рисунок 2 - Газоперекачивающий агрегат ГПА-Ц-16

а - вид сбоку; б - вид сверху; 1 - камера всасывания; 2 - шумоглушитель на входе; 3 - устройство воздухоочистительное; 4 - блок масло агрегатов; 5 - блок маслоохладителей; 6 - трубопровод системы подогрева циклового воздуха; 7 - шумоглушитель на выходе; 8 - проставка; 9 - опора выхлопной шахты; 10 - диффузор; 11 - турбоблок; 12 - блок автоматики: 13 - блок вентиляции 14 - блок промежуточный; 15 - коллектор дренажа; 16 - коллектор системы обогрева; 17 - блок фильтров топливного газа.


Рисунок 3- Схема ГПА-Ц-16

Агрегат включает в себя блоки турбоагрегата, маслоагрегатов, автоматики, контрольно-измерительных приборов (КИП) и вентиляционных устройств, а также устройства подвода циклового воздуха с воздухоочистительным устройством (ВОУ), системами шумоглушения и антиобледенения и выхлопное устройство с шумоглушением.

Турбоблок 11 является базовой сборочной единицей агрегата, в его контейнере на металлической раме размещены нагнетатель, приводной двигатель, маслобак агрегата с трубопроводной системой, гидроаккумулятор, выхлопная улитка, различные системы обеспечения нормальной работы агрегата.

Перекачиваемый газ по газопроводу через входной патрубок "А" поступает в центробежный нагнетатель, где происходит дожатие и подача его через выходной патрубок "Б" в магистральный газопровод.

В качестве привода нагнетателя используется газотурбинный двигатель НК-16СТ авиационного типа, для запуска и питания которого используется очищенный и отредуцированный газ (ГОСТ 21199-75). Для очистки топливного газа от механических примесей на агрегате имеется блок фильтров топливного газа 17.

Механическая связь между свободной турбиной двигателя и ротором нагнетателя осуществляется через промежуточный вал (муфту). Двигательный отсек и отсек нагнетателя турбоблока разделены герметичной перегородкой.

Подвод циклового воздуха для приводного двигателя осуществляется через входные устройства, включающие в себя воздухоочистительное устройство 3, шумоглушители 2, камеру всасывания 1, блок промежуточный с конфузорным воздухозаборником 14. Воздухозаборник обеспечивает равномерность поступающего в двигатель потока воздуха.

Для отвода выхлопных газов, выходящих из свободной турбины двигателя. и снижения их шума служит выхлопное устройство, состоящее из выхлопной улитки, диффузора 10, проставки 8 и шумоглушителей 7. Диффузор и шумоглушители установлены над турбоблоком на отдельной опоре 9.

С целью обеспечения удобства обслуживания агрегата основные узлы маслосистемы размещены в отдельном блоке маслоагрегатов 4, а приборы и шиты системы автоматического управления агрегатом в блоке автоматики 12.

Отсек двигателя вентилируется за счет отбора воздуха из всасывающего тракта центробежным вентилятором, установленным в блоке вентиляции 13. Система вентиляции исключает попадание пыли в отсек двигателя. Блок вентиляции обеспечивает также охлаждение масла в случае аварийного отключения внешнего электропитания вентиляторов за счет отбора части воздуха от компрессора двигателя и пропускания его через маслоохладители

Охлаждение масла в маслосистемах двигателя и нагнетателя осуществляется аппаратами воздушного охлаждения, установленными в двух блоках маслоохладителей 5.

Блок вентиляции и блоки маслоохладителей размещаются соответственно на блоках промежуточном, маслоагрегатов и автоматики. Такая компоновка блоков позволила максимально сократить площадь, занимаемую агрегатом на газоперекачивающей станции.

Стыковка всех блоков осуществляется через гибкие переходники, позволяющие компенсировать неточности установки при монтаже агрегата.

Для обеспечения защиты воздухозаборного устройства двигателя от обледенения на агрегате предусмотрена система подогрева циклового воздуха 6. Система включается в работу автоматически посредством датчиков температуры окружающей среды и работает на принципе отбора с помощью эжекторов части горячих выхлопных газов и подачи их на вход в двигатель. Эжектирующий воздух подводится от компрессора низкого давления. Система обогрева блоков и отсеков агрегата позволяет проводить пусконаладочные и ремонтные работы в холодное время года, она также обеспечивает отбор горячего воздуха от работающего агрегата для нужд станции. Воздух на систему обогрева отбирается от компрессора высокого давления двигателя в количестве; подключение системы обогрева к станционной системе производится через общий для всего агрегата коллектор 16.

Система автоматизированного пожаротушения и автоматизированная система управления агрегата обеспечивают его работу на всех режимах без постоянного присутствия обслуживающего персонала возле агрегата, а так-же функционирование в составе комплексной системы.



Loading...Loading...